4 research outputs found
Sequence dependent antitumour efficacy of the vascular disrupting agent ZD6126 in combination with paclitaxel
The clinical success of small-molecule vascular disrupting agents (VDAs) depends on their combination with conventional therapies. Scheduling and sequencing remain key issues in the design of VDA–chemotherapy combination treatments. This study examined the antitumour activity of ZD6126, a microtubule destabilising VDA, in combination with paclitaxel (PTX), a microtubule-stabilising cytotoxic drug, and the influence of schedule and sequence on the efficacy of the combination. Nude mice bearing MDA-MB-435 xenografts received weekly cycles of ZD6126 (200 mg kg−1 i.p.) administered at different times before or after PTX (10, 20, and 40 mg kg−1 i.v.). ZD6126 given 2 or 24 h after PTX showed no significant benefit, a result that was attributed to a protective effect of PTX against ZD6126-induced vascular damage and tumour necrosis, a hallmark of VDA activity. Paclitaxel counteracting activity was reduced by distancing drug administrations, and ZD6126 given 72 h after PTX potentiated the VDA's antitumour activity. Schedules with ZD6126 given before PTX improved therapeutic activity, which was paralleled by a VDA-induced increase in cell proliferation in the viable tumour tissue. Paclitaxel given 72 h after ZD6126 yielded the best response (50% tumours regressing). A single treatment with ZD6126 followed by weekly administration of PTX was sufficient to achieve a similar response (57% remissions). These findings show that schedule, sequence and timing are crucial in determining the antitumour efficacy of PTX in combination with ZD6126. Induction of tumour necrosis and increased proliferation in the remaining viable tumour tissue could be exploited as readouts to optimise schedules and maximise therapeutic efficacy
Enhanced tumour antiangiogenic effects when combining gefitinib with the antivascular agent ZD6126
Current experimental and clinical knowledge supports the optimisation of endothelial cell targeting using a strategy combining anti-EGFR drugs with antivascular agents. The purpose of the present study was to examine the effects of the association of ZD6126, an antivascular microtubule-destabilising agent, with gefitinib and irradiation on the growth of six head and neck human cancer cell lines xenografted in nude mice and to study predictive and molecular factors responsible for antitumour effects. CAL33- and Hep-2-grafted cell lines were the most sensitive to ZD6126 treatment, with VEGF levels significantly higher (P=0.0336) in these tumour xenografts compared to Detroit 562- and CAL27-grafted cell lines with relatively low VEGF levels that were not sensitive to ZD6126. In contrast, neither IL8 levels nor EGFR expression was linked to the antitumour effects of ZD6126. ZD6126 in combination with gefitinib resulted in a synergistic cytotoxic interaction with greater antitumour effects than gefitinib alone. The synergistic interaction between ZD6126 and gefitinib was corroborated by a significant decrease in CD31 labelling. The present study may serve for future innovative clinical applications, as it suggests that VEGF tumour levels are possible predictors for ZD6126 antitumour efficacy. It also supports the notion of antitumour supra-additivity when combining gefitinib and ZD6126, and identifies neoangiogenesis as the main determinant of this synergistic combination
The Use of Animal Models in the Assessment of Tumour Vascular Disrupting Agents (VDAs)
Tumour vascular disrupting agents (VDAs) are designed to target established tumour blood vessels, with the aim of permanently shutting down tumour blood flow, thereby inducing secondary tumour cell death. The microtubule-disrupting tubulin-binding agents are the largest sub-group of low molecular weight VDAs, a number of which are in advanced clinical development. In addition, a number of putative molecular targets for VDA development are being investigated. In this chapter, we review the role of animal experiments in the pre-clinical assessment of VDAs. We start with considerations of the different rodent tumour models available for study, with an additional section on the potential of the zebrafish. We then review assays of vascular function and morphology, including the use of modern imaging techniques. Throughout, we provide examples of where the techniques have been used and summarise the results obtained. All the models and assay methods have advantages and disadvantages-here, we aim to provide some guidance on their future applications. © 2010 Springer Science+Business Media, LLC