14 research outputs found

    Expression and function of human hemokinin-1 in human and guinea pig airways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human hemokinin-1 (hHK-1) and endokinins are peptides of the tachykinin family encoded by the <it>TAC4 </it>gene. <it>TAC4 </it>and hHK-1 expression as well as effects of hHK-1 in the lung and airways remain however unknown and were explored in this study.</p> <p>Methods</p> <p>RT-PCR analysis was performed on human bronchi to assess expression of tachykinin and tachykinin receptors genes. Enzyme immunoassay was used to quantify hHK-1, and effects of hHK-1 and endokinins on contraction of human and guinea pig airways were then evaluated, as well as the role of hHK-1 on cytokines production by human lung parenchyma or bronchi explants and by lung macrophages.</p> <p>Results</p> <p>In human bronchi, expression of the genes that encode for hHK-1, tachykinin NK<sub>1</sub>-and NK<sub>2</sub>-receptors was demonstrated. hHK-1 protein was found in supernatants from explants of human bronchi, lung parenchyma and lung macrophages. Exogenous hHK-1 caused a contractile response in human bronchi mainly through the activation of NK<sub>2</sub>-receptors, which blockade unmasked a NK<sub>1</sub>-receptor involvement, subject to a rapid desensitization. In the guinea pig trachea, hHK-1 caused a concentration-dependant contraction mainly mediated through the activation of NK<sub>1</sub>-receptors. Endokinin A/B exerted similar effects to hHK-1 on both human bronchi and guinea pig trachea, whereas endokinins C and D were inactive. hHK-1 had no impact on the production of cytokines by explants of human bronchi or lung parenchyma, or by human lung macrophages.</p> <p>Conclusions</p> <p>We demonstrate endogenous expression of <it>TAC4 </it>in human bronchi, the encoded peptide hHK-1 being expressed and involved in contraction of human and guinea pig airways.</p

    Mechanomyographic amplitude and frequency responses during dynamic muscle actions: a comprehensive review

    Get PDF
    The purpose of this review is to examine the literature that has investigated mechanomyographic (MMG) amplitude and frequency responses during dynamic muscle actions. To date, the majority of MMG research has focused on isometric muscle actions. Recent studies, however, have examined the MMG time and/or frequency domain responses during various types of dynamic activities, including dynamic constant external resistance (DCER) and isokinetic muscle actions, as well as cycle ergometry. Despite the potential influences of factors such as changes in muscle length and the thickness of the tissue between the muscle and the MMG sensor, there is convincing evidence that during dynamic muscle actions, the MMG signal provides valid information regarding muscle function. This argument is supported by consistencies in the MMG literature, such as the close relationship between MMG amplitude and power output and a linear increase in MMG amplitude with concentric torque production. There are still many issues, however, that have yet to be resolved, and the literature base for MMG during both dynamic and isometric muscle actions is far from complete. Thus, it is important to investigate the unique applications of MMG amplitude and frequency responses with different experimental designs/methodologies to continually reassess the uses/limitations of MMG

    Dose Assessment For Marine Biota And Humans From Discharge Of 131I To The Marine Environment And Uptake By Algae In Sydney, Australia

    No full text
    Iodine-131 reaches the marine environment through its excretion to the sewer by nuclear medicine patients followed by discharge through coastal and deepwater outfalls. 131I has been detected in macroalgae, which bio-accumulate iodine, growing near the coastal outfall of Cronulla sewage treatment plant (STP) since 1995. During this study, 131I levels in liquid effluent and sludge from three Sydney STPs as well as in macroalgae (Ulva sp. and Ecklonia radiata) growing near their shoreline outfalls were measured. Concentration factors of 176 for Ulva sp. and 526 for E. radiata were derived. Radiation dose rates to marine biota from 131I discharged to coastal waters calculated using the ERICA dose assessment tool were below the ERICA screening level of 10 μGy/hr. Radiation dose rates to humans from immersion in seawater or consumption of Ulva sp. containing 131I were three and two orders of magnitude below the IAEA screening level of 10 μSv/year, respectively.(C) 2011 Elsevier B.V. All rights reserved

    Biokinetics and discrimination factors for delta C-13 and delta N-15 in the omnivorous freshwater crustacean, Cherax destructor.

    No full text
    Knowledge and understanding of biokinetics and discrimination factors for carbon-13 (delta C-13) and nitrogen-15 (delta N-15) are important when using stable isotopes for food-web studies. Therefore, we performed a controlled laboratory diet-switch experiment to examine diet-tissue and diet-faeces discrimination factors as well as the biokinetics of stable-isotope assimilation in the omnivorous freshwater crustacean, Cherax destructor. The biokinetics of delta C-13 could not be established; however, the delta N-15 value of C. destructor tissue reached equilibrium after 80 +/- 35 days, with an estimated biological half-time for N-15 of 19 +/- 5 days. Metabolic activity contributed to the turnover of N-15 by nearly an order of magnitude more than growth. The diet-tissue discrimination factors at the end of the exposure were estimated as -1.1 +/- 0.5% for delta C-13 and +1.5 +/- 1.0% for delta N-15, indicating that a delta N-15 diet-tissue discrimination factor different from the typically assumed +3.4% may be required for freshwater macroinvertebrates such as C. destructor. The diet-faeces discrimination factor for delta N-15 after 120 days was estimated as +0.9 +/- 0.5%. The present study provides an increased understanding of the biokinetics and discrimination factors for a keystone freshwater macroinvertebrate that will be valuable for future food-web studies in freshwater ecosystems. © 2012, CSIRO Publishing
    corecore