38 research outputs found

    Mercury's Moment of Inertia from Spin and Gravity Data

    Get PDF
    Earth-based radar observations of the spin state of Mercury at 35 epochs between 2002 and 2012 reveal that its spin axis is tilted by (2.04 plus or minus 0.08) arc min with respect to the orbit normal. The direction of the tilt suggests that Mercury is in or near a Cassini state. Observed rotation rate variations clearly exhibit an 88-day libration pattern which is due to solar gravitational torques acting on the asymmetrically shaped planet. The amplitude of the forced libration, (38.5 plus or minus 1.6) arc sec, corresponds to a longitudinal displacement of ∼450 m at the equator. Combining these measurements of the spin properties with second-degree gravitational harmonics (Smith et al., 2012) provides an estimate of the polar moment of inertia of MercuryC/MR2 = 0.346 plus or minus 0.014, where M and R are Mercury's mass and radius. The fraction of the moment that corresponds to the outer librating shell, which can be used to estimate the size of the core, is Cm/C = 0.431 plus or minus 0.025

    Genetic Burden of TNNI3K in Diagnostic Testing of Patients With Dilated Cardiomyopathy and Supraventricular Arrhythmias

    Get PDF
    BACKGROUND: Genetic variants in TNNI3K (troponin-I interacting kinase) have previously been associated with dilated cardiomyopathy (DCM), cardiac conduction disease, and supraventricular tachycardias. However, the link between TNNI3K variants and these cardiac phenotypes shows a lack of consensus concerning phenotype and protein function. METHODS: We describe a systematic retrospective study of a cohort of patients undergoing genetic testing for cardiac arrhythmias and cardiomyopathy including TNNI3K. We further performed burden testing of TNNI3K in the UK Biobank. For 2 novel TNNI3K variants, we tested cosegregation. TNNI3K kinase function was estimated by TNNI3K autophosphorylation assays.RESULTS: We demonstrate enrichment of rare coding TNNI3K variants in DCM patients in the Amsterdam cohort. In the UK Biobank, we observed an association between TNNI3K missense (but not loss-of-function) variants and DCM and atrial fibrillation. Furthermore, we demonstrate genetic segregation for 2 rare variants, TNNI3K-p.Ile512Thr and TNNI3K-p.His592Tyr, with phenotypes consisting of DCM, cardiac conduction disease, and supraventricular tachycardia, together with increased autophosphorylation. In contrast, TNNI3K-p.Arg556_Asn590del, a likely benign variant, demonstrated depleted autophosphorylation. CONCLUSIONS: Our findings demonstrate an increased burden of rare coding TNNI3K variants in cardiac patients with DCM. Furthermore, we present 2 novel likely pathogenic TNNI3K variants with increased autophosphorylation, suggesting that enhanced autophosphorylation is likely to drive pathogenicity.</p

    Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility

    Get PDF
    Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel NaV1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on NaV1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings

    Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility.

    Get PDF
    Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel Na1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on Na1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Genome-wide association studies of cardiovascular disease

    No full text
    Genome-wide association studies (GWAS) aim to identify common genetic variants that are associated with traits and diseases. Since 2005, more than 5,000 GWAS have been published for almost as many traits. These studies have offered insights into the loci and genes underlying phenotypic traits, have highlighted genetic correlations across traits and diseases, and are beginning to demonstrate clinical utility by identifying individuals at increased risk for common diseases. GWAS have been widely utilized across cardiovascular diseases and associated phenotypic traits, with insights facilitated by multicenter registry studies and large biobank data sets. In this review, we describe how GWAS have informed the genetic architecture of cardiovascular diseases and the insights they have provided into disease pathophysiology, using archetypal conditions for both common and rare diseases. We also describe how biobank data sets can complement disease-specific studies, particularly for rarer cardiovascular diseases, and how findings from GWAS have the potential to impact on clinical care. Finally, we discuss the outstanding challenges facing research in this field and how they can be addressed

    Adjusting for common variant polygenic scores improves yield in rare variant association analyses

    No full text
    With the emergence of large-scale sequencing data, methods for improving power in rare variant association tests are needed. Here we show that adjusting for common variant polygenic scores improves yield in gene-based rare variant association tests across 65 quantitative traits in the UK Biobank (up to 20% increase at α = 2.6 × 10−6), without marked increases in false-positive rates or genomic inflation. Benefits were seen for various models, with the largest improvements seen for efficient sparse mixed-effects models. Our results illustrate how polygenic score adjustment can efficiently improve power in rare variant association discovery

    Rare and Common Genetic Variation Underlying the Risk of Hypertrophic Cardiomyopathy in a National Biobank

    No full text
    Importance Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death in young people. Although rare genetic variants are well-established contributors to HCM risk, common genetic variants have recently been implicated in disease pathogenesis. Objective To assess the contributions of rare and common genetic variation to risk of HCM in the general population. Design, Setting, and Participants This cohort study of the UK Biobank (data from 2006-2010) and the Mass General Brigham Biobank (2010-2019) assessed the relative and joint contributions of rare genetic variants and a common variant (polygenic) score to risk of HCM. Both rare and common variant predictors were then evaluated in the context of relevant clinical risk factors. Data analysis was conducted from May 2021 to February 2022. Exposures Pathogenic rare variants, common-variant (polygenic) score, and clinical risk factors. Main Outcomes and Measures Risk of HCM. Results The primary study population comprised 184 511 individuals from the UK Biobank. Mean (SD) age was 56 (8) years, 83 690 (45%) of participants were men, and 204 (0.1%) participants had HCM. Of 51 genes included in clinical genetic testing panels for HCM, pathogenic or likely pathogenic variants in 14 core genes (designated by the American College of Medical Genetics and Genomics [ACMG]) were associated with 55-fold higher odds (95% CI, 35-83) of HCM, while those in the remaining 37 non-ACMG genes were not significantly associated with HCM (OR, 1.8; 95% CI, 0.6-4.0). ClinVar pathogenic or likely pathogenic mutations in MYBPC3 (OR, 72; 95% CI, 39-124) and MYH7 (OR, 61; 95% CI, 26-121) were strongly associated with HCM, as were loss-of-function variants in ALPK3 (OR, 13; 95% CI, 4.4-28). A polygenic score was strongly associated with HCM (OR per SD increase in score, 1.6; 95% CI, 1.4-1.8), with concordant results in the Mass General Brigham Biobank. Genetic factors enhanced clinical risk prediction for HCM: addition of rare variant carrier status and the polygenic score to clinical risk factors (obesity, hypertension, atrial fibrillation, and coronary artery disease) improved the area under the receiver operator characteristic curve from 0.71 (95% CI, 0.65-0.77) to 0.82 (95% CI, 0.77-0.87). Conclusions and Relevance Both rare and common genetic variants contribute substantially to HCM susceptibility in the general population and improve HCM risk prediction beyond that achieved with clinical factors
    corecore