434 research outputs found

    Challenges and opportunities on lipid metabolism disorders diagnosis and therapy: Novel insights and future perspective

    Get PDF
    Dyslipidemia has been globally recognized, for almost seven decades, as one of the most important risk factors for the development and complications of atherosclerotic cardiovascular disease (ASCVD) [...]

    Review of the ELI-NP-GBS low level rf and synchronization systems

    Get PDF
    The Gamma Beam System (GBS) of ELI-NP is a linac based gamma-source in construction at Magurele (RO) by the European consortium EuroGammaS led by INFN. Photons with tunable energy and with intensity and brilliance well beyond the state of the art will be produced by Compton back-scattering between a high quality electron beam (up to 740 MeV) and a 515 nm intense laser pulse. Production of very intense photon flux with narrow bandwidth requires multi-bunch operation at 100 Hz repetition rate. A total of 13 klystrons, 3 S-band (2856 MHz) and 10 C-band (5712 MHz) will power a total of 14 Travelling Wave accelerating sections (2 S-band and 12 C-band) plus 3 S-band Standing Wave cavities (a 1.6 cell RF gun and 2 RF deflectors). Each klystron is individually driven by a temperature stabilized LLRF module, for a maximum flexibility in terms of accelerating gradient, arbitrary pulse shaping (e.g. to compensate beam loading effects in multi-bunch regime) and compensation of long-term thermal drifts. In this paper, the whole LLRF system architecture and bench test results, the RF reference generation and distribution together with an overview of the synchronization system will be described

    Critical renormalized coupling constants in the symmetric phase of the Ising models

    Full text link
    Using a novel finite size scaling Monte Carlo method, we calculate the four, six and eight point renormalized coupling constants defined at zero momentum in the symmetric phase of the three dimensional Ising system. The results of the 2D Ising system that were directly measured are also reported. Our values of the six and eight point coupling constants are significantly different from those obtained from other methods.Comment: 7 pages, 2 figure

    Assessing the Quality of Actions

    Get PDF
    While recent advances in computer vision have provided reliable methods to recognize actions in both images and videos, the problem of assessing how well people perform actions has been largely unexplored in computer vision. Since methods for assessing action quality have many real-world applications in healthcare, sports, and video retrieval, we believe the computer vision community should begin to tackle this challenging problem. To spur progress, we introduce a learning-based framework that takes steps towards assessing how well people perform actions in videos. Our approach works by training a regression model from spatiotemporal pose features to scores obtained from expert judges. Moreover, our approach can provide interpretable feedback on how people can improve their action. We evaluate our method on a new Olympic sports dataset, and our experiments suggest our framework is able to rank the athletes more accurately than a non-expert human. While promising, our method is still a long way to rivaling the performance of expert judges, indicating that there is significant opportunity in computer vision research to improve on this difficult yet important task.National Science Foundation (U.S.). Graduate Research FellowshipGoogle (Firm) (Research Award)United States. Office of Naval Research. Multidisciplinary University Research Initiative (N000141010933

    Vortex Quantum Nucleation and Tunneling in Superconducting Thin Films: Role of Dissipation and Periodic Pinning

    Full text link
    We investigate the phenomenon of decay of a supercurrent in a superconducting thin film in the absence of an applied magnetic field. The resulting zero-temperature resistance derives from two equally possible mechanisms: 1) quantum tunneling of vortices from the edges of the sample; and 2) homogeneous quantum nucleation of vortex-antivortex pairs in the bulk of the sample, arising from the instability of the Magnus field's ``vacuum''. We study both situations in the case where quantum dissipation dominates over the inertia of the vortices. We find that the vortex tunneling and nucleation rates have a very rapid dependence on the current density driven through the sample. Accordingly, whilst normally the superconductor is essentially resistance-free, for the high current densities that can be reached in high-TcT_c films a measurable resistance might develop. We show that edge-tunneling appears favoured, but the presence of pinning centres and of thermal fluctuations leads to an enhancement of the nucleation rates. In the case where a periodic pinning potential is artificially introduced in the sample, we show that current-oscillations will develop indicating an effect specific to the nucleation mechanism where the vortex pair-production rate, thus the resistance, becomes sensitive to the corrugation of the pinning substrate. In all situations, we give estimates for the observability of the studied phenomena.Comment: 8 pages (LaTeX), 2 postscript figures. Invited talk to the SATT8 (8th Italian Meeting on High-T_c Superconductivity), Como (Italy), Villa Olmo, 1-4 October 1996, to be published in La Rivista del Nuovo Cimento

    Crispr gene editing in lipid disorders and atherosclerosis: Mechanisms and opportunities

    Get PDF
    Elevated circulating concentrations of low-density lipoprotein cholesterol (LDL-C) have been conclusively demonstrated in epidemiological and intervention studies to be causally associated with the development of atherosclerotic cardiovascular disease. Enormous advances in LDL-C reduction have been achieved through the use of statins, and in recent years, through drugs targeting proprotein convertase subtilisin/kexin type 9 (PCSK9), a key regulator of the hepatic LDL-receptor. Existing approaches to PCSK9 targeting have used monoclonal antibodies or RNA interference. Although these approaches do not require daily dosing, as statins do, repeated subcutaneous injections are nevertheless necessary to maintain effectiveness over time. Recent experimental studies suggest that clustered regularly interspaced short palindromic repeats (CRISPR) gene-editing targeted at PCSK9 may represent a promising tool to achieve the elusive goal of a ‘fire and forget’ lifelong approach to LDL-C reduction. This paper will provide an overview of CRISPR technology, with a particular focus on recent studies with relevance to its potential use in atherosclerotic cardiovascular disease
    corecore