116 research outputs found
Multiwavelength Study on Solar and Interplanetary Origins of the Strongest Geomagnetic Storm of Solar Cycle 23
We study the solar sources of an intense geomagnetic storm of solar cycle 23
that occurred on 20 November 2003, based on ground- and space-based
multiwavelength observations. The coronal mass ejections (CMEs) responsible for
the above geomagnetic storm originated from the super-active region NOAA 10501.
We investigate the H-alpha observations of the flare events made with a 15 cm
solar tower telescope at ARIES, Nainital, India. The propagation
characteristics of the CMEs have been derived from the three-dimensional images
of the solar wind (i.e., density and speed) obtained from the interplanetary
scintillation data, supplemented with other ground- and space-based
measurements. The TRACE, SXI and H-alpha observations revealed two successive
ejections (of speeds ~350 and ~100 km/s), originating from the same filament
channel, which were associated with two high speed CMEs (~1223 and ~1660 km/s,
respectively). These two ejections generated propagating fast shock waves
(i.e., fast drifting type II radio bursts) in the corona. The interaction of
these CMEs along the Sun-Earth line has led to the severity of the storm.
According to our investigation, the interplanetary medium consisted of two
merging magnetic clouds (MCs) that preserved their identity during their
propagation. These magnetic clouds made the interplanetary magnetic field (IMF)
southward for a long time, which reconnected with the geomagnetic field,
resulting the super-storm (Dst_peak=-472 nT) on the Earth.Comment: 24 pages, 16 figures, Accepted for publication in Solar Physic
3D Coronal Density Reconstruction and Retrieving the Magnetic Field Structure during Solar Minimum
Measurement of the coronal magnetic field is a crucial ingredient in
understanding the nature of solar coronal phenomena at all scales. We employed
STEREO/COR1 data obtained during a deep minimum of solar activity in February
2008 (Carrington rotation CR 2066) to retrieve and analyze the
three-dimensional (3D) coronal electron density in the range of heights from
1.5 to 4 Rsun using a tomography method. With this, we qualitatively deduced
structures of the coronal magnetic field. The 3D electron density analysis is
complemented by the 3D STEREO/EUVI emissivity in the 195 A band obtained by
tomography for the same CR. A global 3D MHD model of the solar corona was used
to relate the reconstructed 3D density and emissivity to open/closed magnetic
field structures. We show that the density maximum locations can serve as an
indicator of current sheet position, while the locations of the density
gradient maximum can be a reliable indicator of coronal hole boundaries. We
find that the magnetic field configuration during CR 2066 has a tendency to
become radially open at heliocentric distances greater than 2.5 Rsun. We also
find that the potential field model with a fixed source surface (PFSS) is
inconsistent with the boundaries between the regions with open and closed
magnetic field structures. This indicates that the assumption of the potential
nature of the coronal global magnetic field is not satisfied even during the
deep solar minimum. Results of our 3D density reconstruction will help to
constrain solar coronal field models and test the accuracy of the magnetic
field approximations for coronal modeling.Comment: Published in "Solar Physics
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy
We review HB stars in a broad astrophysical context, including both variable
and non-variable stars. A reassessment of the Oosterhoff dichotomy is
presented, which provides unprecedented detail regarding its origin and
systematics. We show that the Oosterhoff dichotomy and the distribution of
globular clusters (GCs) in the HB morphology-metallicity plane both exclude,
with high statistical significance, the possibility that the Galactic halo may
have formed from the accretion of dwarf galaxies resembling present-day Milky
Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the
second-parameter problem is presented. A technique is proposed to estimate the
HB types of extragalactic GCs on the basis of integrated far-UV photometry. The
relationship between the absolute V magnitude of the HB at the RR Lyrae level
and metallicity, as obtained on the basis of trigonometric parallax
measurements for the star RR Lyrae, is also revisited, giving a distance
modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are
studied. Finally, the conductive opacities used in evolutionary calculations of
low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and
Space Scienc
Dynamically adaptive educational games: A new perspective
Sajjadi P, Van Broeckhoven F, De Troyer O. Dynamically adaptive educational games: A new perspective. In: International Conference on Serious Games. 2014: 71--76
Women's labour supply decisions in the light of possible fiscal reforms
SIGLEAvailable from British Library Document Supply Centre-DSC:7755.0364(36/99) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
- …