13 research outputs found

    Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures

    Full text link
    Topological insulators are characterized by a nontrivial band topology driven by the spin-orbit coupling. To fully explore the fundamental science and application of topological insulators, material realization is indispensable. Here we predict, based on tight-binding modeling and first-principles calculations, that bilayers of perovskite-type transition-metal oxides grown along the [111] crystallographic axis are potential candidates for two-dimensional topological insulators. The topological band structure of these materials can be fine-tuned by changing dopant ions, substrates, and external gate voltages. We predict that LaAuO3_3 bilayers have a topologically-nontrivial energy gap of about 0.15 eV, which is sufficiently large to realize the quantum spin-Hall effect at room temperature. Intriguing phenomena, such as fractional quantum Hall effect, associated with the nearly-flat topologically-nontrivial bands found in ege_g systems are also discussed.Comment: Main text 11 pages with 4 figures and 1 table. Supplementary materials 4 pages with 2 figure
    corecore