1,177 research outputs found

    Conformation Regulation of the X Chromosome Inactivation Center: A Model

    Get PDF
    X-Chromosome Inactivation (XCI) is the process whereby one, randomly chosen X becomes transcriptionally silenced in female cells. XCI is governed by the Xic, a locus on the X encompassing an array of genes which interact with each other and with key molecular factors. The mechanism, though, establishing the fate of the X's, and the corresponding alternative modifications of the Xic architecture, is still mysterious. In this study, by use of computer simulations, we explore the scenario where chromatin conformations emerge from its interaction with diffusing molecular factors. Our aim is to understand the physical mechanisms whereby stable, non-random conformations are established on the Xic's, how complex architectural changes are reliably regulated, and how they lead to opposite structures on the two alleles. In particular, comparison against current experimental data indicates that a few key cis-regulatory regions orchestrate the organization of the Xic, and that two major molecular regulators are involved

    Elevated glutamine/glutamate ratio in cerebrospinal fluid of first episode and drug naive schizophrenic patients

    Get PDF
    BACKGROUND: Recent magnetic resonance spectroscopy (MRS) studies report that glutamine is altered in the brains of schizophrenic patients. There were also conflicting findings on glutamate in cerebrospinal fluid (CSF) of schizophrenic patients, and absent for glutamine. This study aims to clarify the question of glutamine and glutamate in CSF of first episode and drug naive schizophrenic patients. METHOD: Levels of glutamine and glutamate in CSF of 25 first episode and drug-naive male schizophrenic patients and 17 age-matched male healthy controls were measured by a high performance liquid chromatography. RESULTS: The ratio (126.1 (median), 117.7 ± 27.4 (mean ± S.D.)) of glutamine to glutamate in the CSF of patients was significantly (z = -3.29, p = 0.001) higher than that (81.01 (median), 89.1 ± 22.5 (mean ± S.D.)) of normal controls although each level of glutamine and glutamate in patients was not different from that of normal controls. CONCLUSION: Our data suggests that a disfunction in glutamate-glutamine cycle in the brain may play a role in the pathophysiology of schizophrenia

    Comparison of Artificial Neural Network and Logistic Regression Models for Predicting In-Hospital Mortality after Primary Liver Cancer Surgery

    Get PDF
    BACKGROUND: Since most published articles comparing the performance of artificial neural network (ANN) models and logistic regression (LR) models for predicting hepatocellular carcinoma (HCC) outcomes used only a single dataset, the essential issue of internal validity (reproducibility) of the models has not been addressed. The study purposes to validate the use of ANN model for predicting in-hospital mortality in HCC surgery patients in Taiwan and to compare the predictive accuracy of ANN with that of LR model. METHODOLOGY/PRINCIPAL FINDINGS: Patients who underwent a HCC surgery during the period from 1998 to 2009 were included in the study. This study retrospectively compared 1,000 pairs of LR and ANN models based on initial clinical data for 22,926 HCC surgery patients. For each pair of ANN and LR models, the area under the receiver operating characteristic (AUROC) curves, Hosmer-Lemeshow (H-L) statistics and accuracy rate were calculated and compared using paired T-tests. A global sensitivity analysis was also performed to assess the relative significance of input parameters in the system model and the relative importance of variables. Compared to the LR models, the ANN models had a better accuracy rate in 97.28% of cases, a better H-L statistic in 41.18% of cases, and a better AUROC curve in 84.67% of cases. Surgeon volume was the most influential (sensitive) parameter affecting in-hospital mortality followed by age and lengths of stay. CONCLUSIONS/SIGNIFICANCE: In comparison with the conventional LR model, the ANN model in the study was more accurate in predicting in-hospital mortality and had higher overall performance indices. Further studies of this model may consider the effect of a more detailed database that includes complications and clinical examination findings as well as more detailed outcome data

    Quantitative imaging of concentrated suspensions under flow

    Full text link
    We review recent advances in imaging the flow of concentrated suspensions, focussing on the use of confocal microscopy to obtain time-resolved information on the single-particle level in these systems. After motivating the need for quantitative (confocal) imaging in suspension rheology, we briefly describe the particles, sample environments, microscopy tools and analysis algorithms needed to perform this kind of experiments. The second part of the review focusses on microscopic aspects of the flow of concentrated model hard-sphere-like suspensions, and the relation to non-linear rheological phenomena such as yielding, shear localization, wall slip and shear-induced ordering. Both Brownian and non-Brownian systems will be described. We show how quantitative imaging can improve our understanding of the connection between microscopic dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of methodology. Submitted for special volume 'High Solid Dispersions' ed. M. Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009); 22 pages, 16 fig

    Modulation of gene-specific epigenetic states and transcription by non-coding RNAs

    Get PDF
    Emerging evidence points to a role for long non-coding RNAs in the modulation of epigenetic states and transcription in human cells. New insights, using various forms of small non-coding RNAs, suggest that a mechanism of action is operative in human cells, which utilizes non-coding RNAs to direct epigenetic marks to homology containing loci resulting ultimately in the epigenetic-based modulation of gene transcription. Importantly, insights into this mechanism of action have allowed for certain target sequences, which are either actively involved in RNA mediated epigenetic regulation or targets for non-coding RNA based epigenetic regulation, to be selected. As such, it is now feasible to utilize small antisense RNAs to either epigenetically silence a gene expression or remove epigenetic silencing of endogenous non-coding RNAs and essentially turn on a gene expression. Knowledge of this emerging RNA-based epigenetic regulatory network and our ability to cognitively control gene expression has deep implications in the development of an entirely new area of pharmacopeia

    Epstein-Barr Virus BGLF4 Kinase Retards Cellular S-Phase Progression and Induces Chromosomal Abnormality

    Get PDF
    Epstein-Barr virus (EBV) induces an uncoordinated S-phase-like cellular environment coupled with multiple prophase-like events in cells replicating the virus. The EBV encoded Ser/Thr kinase BGLF4 has been shown to induce premature chromosome condensation through activation of condensin and topoisomerase II and reorganization of the nuclear lamina to facilitate the nuclear egress of nucleocapsids in a pathway mimicking Cdk1. However, the observation that RB is hyperphosphorylated in the presence of BGLF4 raised the possibility that BGLF4 may have a Cdk2-like activity to promote S-phase progression. Here, we investigated the regulatory effects of BGLF4 on cell cycle progression and found that S-phase progression and DNA synthesis were interrupted by BGLF4 in mammalian cells. Expression of BGLF4 did not compensate Cdk1 defects for DNA replication in S. cerevisiae. Using time-lapse microscopy, we found the fate of individual HeLa cells was determined by the expression level of BGLF4. In addition to slight cell growth retardation, BGLF4 elicits abnormal chromosomal structure and micronucleus formation in 293 and NCP-TW01 cells. In Saos-2 cells, BGLF4 induced the hyperphosphorylation of co-transfected RB, while E2F1 was not released from RB-E2F1 complexes. The E2F1 regulated activities of the cyclin D1 and ZBRK1 promoters were suppressed by BGLF4 in a dose dependent manner. Detection with phosphoamino acid specific antibodies revealed that, in addition to Ser780, phosphorylation of the DNA damage-responsive Ser612 on RB was enhanced by BGLF4. Taken together, our study indicates that BGLF4 may directly or indirectly induce a DNA damage signal that eventually interferes with host DNA synthesis and delays S-phase progression

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex

    MicroRNA-Mediated Positive Feedback Loop and Optimized Bistable Switch in a Cancer Network Involving miR-17-92

    Get PDF
    MicroRNAs (miRNAs) are small, noncoding RNAs that play an important role in many key biological processes, including development, cell differentiation, the cell cycle and apoptosis, as central post-transcriptional regulators of gene expression. Recent studies have shown that miRNAs can act as oncogenes and tumor suppressors depending on the context. The present work focuses on the physiological significance of miRNAs and their role in regulating the switching behavior. We illustrate an abstract model of the Myc/E2F/miR-17-92 network presented by Aguda et al. (2008), which is composed of coupling between the E2F/Myc positive feedback loops and the E2F/Myc/miR-17-92 negative feedback loop. By systematically analyzing the network in close association with plausible experimental parameters, we show that, in the presence of miRNAs, the system bistability emerges from the system, with a bistable switch and a one-way switch presented by Aguda et al. instead of a single one-way switch. Moreover, the miRNAs can optimize the switching process. The model produces a diverse array of response-signal behaviors in response to various potential regulating scenarios. The model predicts that this transition exists, one from cell death or the cancerous phenotype directly to cell quiescence, due to the existence of miRNAs. It was also found that the network involving miR-17-92 exhibits high noise sensitivity due to a positive feedback loop and also maintains resistance to noise from a negative feedback loop

    Effects of air pollution on neonatal prematurity in guangzhou of china: a time-series study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the last decade, a few studies have investigated the possible adverse effects of ambient air pollution on preterm birth. However, the correlation between them still remains unclear, due to insufficient evidences.</p> <p>Methods</p> <p>The correlation between air pollution and preterm birth in Guangzhou city was examined by using the Generalized Additive Model (GAM) extended Poisson regression model in which we controlled the confounding factors such as meteorological factors, time trends, weather and day of the week (DOW). We also adjusted the co linearity of air pollutants by using Principal Component Analysis. The meteorological data and air pollution data were obtained from the Meteorological Bureau and the Environmental Monitoring Centre, while the medical records of newborns were collected from the perinatal health database of all obstetric institutions in Guangzhou, China in 2007.</p> <p>Results</p> <p>In 2007, the average daily concentrations of NO<sub>2</sub>, PM<sub>10 </sub>and SO<sub>2 </sub>in Guangzhou, were 61.04, 82.51 and 51.67 μg/m<sup>3 </sup>respectively, where each day an average of 21.47 preterm babies were delivered. Pearson correlation analysis suggested a negative correlation between the concentrations of NO<sub>2</sub>, PM<sub>10</sub>, SO<sub>2, </sub>and temperature as well as relative humidity. As for the time-series GAM analysis, the results of single air pollutant model suggested that the cumulative effects of NO<sub>2</sub>, PM<sub>10 </sub>and SO<sub>2 </sub>reached its peak on day 3, day 4 and day 3 respectively. An increase of 100 μg/m<sup>3 </sup>of air pollutants corresponded to relative risks (RRs) of 1.0542 (95%CI: 1.0080 ~1.1003), 1.0688 (95%CI: 1.0074 ~1.1301) and 1.1298 (95%CI: 1.0480 ~1.2116) respectively. After adjusting co linearity by using the Principal Component Analysis, the GAM model of the three air pollutants suggested that an increase of 100 μg/m<sup>3 </sup>of air pollutants corresponded to RRs of 1.0185 (95%CI: 1.0056~1.0313), 1.0215 (95%CI: 1.0066 ~1.0365) and 1.0326 (95%CI: 1.0101 ~1.0552) on day 0; and RRs of the three air pollutants, at their strongest cumulative effects, were 1.0219 (95%CI: 1.0053~1.0386), 1.0274 (95%CI: 1.0066~1.0482) and 1.0388 (95%CI: 1.0096 ~1.0681) respectively.</p> <p>Conclusions</p> <p>This study indicates that the daily concentrations of air pollutants such as NO<sub>2</sub>, PM<sub>10 </sub>and SO<sub>2 </sub>have a positive correlation with the preterm births in Guangzhou, China.</p
    corecore