18 research outputs found

    Is there a cloud in the silver lining for imatinib?

    Get PDF
    Imatinib mesylate (Gleevec® or Glivec®), a small molecule tyrosine kinase inhibitor for the treatment of chronic myeloid leukaemia, has been said to herald the dawn of a new er-a of rationally designed, molecularly targeted oncotherapy. Lurking on the same new horizon, however, is the age-old spectre of drug resistance. This review sets the intoxicating clinical perspective against the more sobering laboratory evidence of such divergent mechanisms of imatinib resistance as gene amplification and stem cell quiescence. Polychemotherapy has already been considered to combat resistance, but a more innovative, as yet unformulated, approach may be advocated

    Rationale for combination therapy of chronic myelogenous leukaemia with imatinib and irradiation or alkylating agents: implications for pretransplant conditioning

    Get PDF
    The tyrosine kinase activity of the BCR–ABL oncoprotein results in reduced apoptosis and thus prolongs survival of chronic myelogenous leukaemia cells. The tyrosine kinase inhibitor imatinib (formerly STI571) was reported to selectively suppress the proliferation of BCR–ABL-positive cells. Assuming that imatinib could be included in pretransplantation conditioning therapies, we tested whether combinations of imatinib and γ-irradiation or alkylating agents such as busulfan or treosulfan would display synergistic activity in BCR–ABL-positive chronic myelogenous leukaemia BV173 and EM-3 cell lines. Further, primary cells of untreated chronic myelogenous leukaemia patients were assayed for colony forming ability under combination therapy with imatinib. Additionally, the cytotoxic effect of these combinations on BCR–ABL-negative cells was investigated. In the cell lines a tetrazolium based MTT assay was used to quantify growth inhibition after exposure to cytotoxic drugs alone or to combinations with imatinib. Irradiation was applied prior to exposure to imatinib. Interaction of drugs was analysed using the median-effect method of Chou and Talalay. The combination index was calculated according to the classic isobologram equation. The combination imatinib + γ-irradiation proved to be significantly synergistic over a broad range of cell growth inhibition levels in both BCR–ABL-positive cell lines and produced the strongest reduction in primary chronic myelogenous leukaemia colony-forming progenitor cells. Combinations of imatinib + busulfan and imatinib + treosulfan showed merely additive to antagonistic effects. Imatinib did not potentiate the effects of irradiation or cytotoxic agents in BCR–ABL-negative cells. Our data provide the basis to further develop imatinib-containing conditioning therapies for stem cell transplantation in chronic myelogenous leukaemia

    The in vitro activity of the tyrosine kinase inhibitor STI571 in BCR-ABL positive chronic myeloid leukaemia cells: synergistic interactions with anti-leukaemic agents.

    Get PDF
    Chronic myeloid leukaemia is typically characterised by the presence of dysregulated BCR-ABL tyrosine kinase activity, which is central to the oncogenic feature of being resistant to a wide range of cytotoxic agents. We have investigated whether the inhibition of this tyrosine kinase by the novel compound STI571 (formerly CGP57148B) would render K562, KU812 cell lines and chronic myeloid leukaemia-progenitor cells sensitive to induction of cell kill. Proliferation assays showed STI571 to be an effective cytotoxic agent in chronic myeloid leukaemia-derived cell lines (IC(50) on day 5 of 4.6 microg ml(-1) and 3.4 microg ml(-1) for K562 and KU812 respectively) and in leukaemic blast cells (per cent viability on day 3 at 4 microg ml(-1): 55.5+/-8.7 vs 96.4+/-3.7%). STI571 also appeared to specifically target bcr-abl expressing cells, as results from colony forming assays using the surviving cell fraction from STI571-treated peripheral CD34(+) chronic myeloid leukaemia blast cells, indicated a reduction in the expansion of colonies of myeloid lineage, but no effect on normal colony formation. Our data also showed synergy between STI571 and other anti-leukaemic agents; as an example, there were significant increases in per cent cell kill in cell lines cultured with both STI571 and etoposide compared to the two alone (per cent cell kill on day 3: 73.7+/-11.3 vs 44.5+/-8.7 and 17.8+/-7.0% in cultures with STI571 and etoposide alone respectively; P<0.001). This study confirms the central oncogenic role of BCR-ABL in the pathogenesis of chronic myeloid leukaemia, and highlights the role of targeting this tyrosine kinase as a useful tool in the clinical management of the disease

    Lonafarnib reduces the resistance of primitive quiescent CML cells to imatinib mesylate in vitro

    No full text
    Recent studies indicate that a rare population of primitive quiescent BCR-ABL&lt;sup&gt;+&lt;/sup&gt; cells are innately insensitive to imatinib mesylate (IM) and persist after IM therapy of patients with chronic myeloid leukemia (CML). New approaches to the eradication of these cells are therefore likely to be crucial to the development of curative therapies for CML. We have now found that Ara-C, LY294002 (a PI-3 ( phosphatidylinositol-3' kinase) kinase inhibitor), 17AAG (a heat-shock protein (HSP)-90 antagonist) and lonafarnib (a farnesyltransfease inhibitor) all enhance the toxicity of IM on K562 cells and on the total CD34&lt;sup&gt;+&lt;/sup&gt; leukemic cell population from chronic phase CML patients. However, for quiescent CD34&lt;sup&gt;+&lt;/sup&gt; leukemic cells, this was achieved only by concomitant exposure of the cells to lonafarnib. Ara-C or LY294002 alone blocked the proliferation of these cells but did not kill them, and Ara-C, LY294002 or 17AAG in combination with IM enhanced the cytostatic effect of IM but did not prevent the subsequent regrowth of the surviving leukemic cells. These studies demonstrate the importance of &lt;i&gt;in vitro&lt;/i&gt; testing of novel agents on the subset of primary leukemic cells most likely to determine long- term treatment outcomes &lt;i&gt;in vivo&lt;/i&gt;

    High-vs low-dose cytarabine combined with interferon alfa in patients with first chronic phase chronic myeloid leukemia. A prospective randomized phase III study.

    No full text
    Contains fulltext : 34676schattenberg.pdf (publisher's version ) (Closed access)A prospective randomized phase III study was performed to evaluate whether intensified cytarabine would induce a higher response rate and longer event-free interval as compared to low-dose cytarabine in chronic myeloid leukemia (CML). One hundred and eighteen patients with CML in early chronic phase entered the study. Twenty-eight out of 32 patients assigned to group A received two cycles of a combination of intensified cytarabine and idarubicin followed by interferon alfa (IFN-alpha) maintenance, 28 patients in group B received standard treatment by a combination of low-dose cytarabine and IFN-alpha. Forty-nine patients with a human leukocyte antigen-identical sibling donor proceeded to allogeneic stem cell transplantation (allo-SCT) and nine patients were excluded from the analysis. Hematological response was observed in 97% of the patients in group A vs 86% of the patients in group B during the first year of treatment. In group A, 16 patients (50%) achieved a major cytogenetic response, which compared to seven patients (25%) with a major cytogenetic response in group B. With a median follow-up of 58 months (range 34-76), event-free survival was not significantly different between arms A and B. The estimated 5-year survival rate was 56% in the intensified arm and 77% in the low-dose arm (P = 0.05). Recipients of allo-SCT showed a 5-year estimated survival rate of 55%. Although intensified cytarabine induced a higher initial percentage of major and complete cytogenetic responses, responses were not sustained by IFN-alpha maintenance therapy
    corecore