111 research outputs found

    The Sun Health Research Institute Brain Donation Program: Description and Eexperience, 1987–2007

    Get PDF
    The Brain Donation Program at Sun Health Research Institute has been in continual operation since 1987, with over 1000 brains banked. The population studied primarily resides in the retirement communities of northwest metropolitan Phoenix, Arizona. The Institute is affiliated with Sun Health, a nonprofit community-owned and operated health care provider. Subjects are enrolled prospectively to allow standardized clinical assessments during life. Funding comes primarily from competitive grants. The Program has made short postmortem brain retrieval a priority, with a 2.75-h median postmortem interval for the entire collection. This maximizes the utility of the resource for molecular studies; frozen tissue from approximately 82% of all cases is suitable for RNA studies. Studies performed in-house have shown that, even with very short postmortem intervals, increasing delays in brain retrieval adversely affect RNA integrity and that cerebrospinal fluid pH increases with postmortem interval but does not predict tissue viability

    The Cosmological Constant

    Get PDF
    This is a review of the physics and cosmology of the cosmological constant. Focusing on recent developments, I present a pedagogical overview of cosmology in the presence of a cosmological constant, observational constraints on its magnitude, and the physics of a small (and potentially nonzero) vacuum energy.Comment: 50 pages. Submitted to Living Reviews in Relativity (http://www.livingreviews.org/), December 199

    Ancestral Mutation in Telomerase Causes Defects in Repeat Addition Processivity and Manifests As Familial Pulmonary Fibrosis

    Get PDF
    The telomerase reverse transcriptase synthesizes new telomeres onto chromosome ends by copying from a short template within its integral RNA component. During telomere synthesis, telomerase adds multiple short DNA repeats successively, a property known as repeat addition processivity. However, the consequences of defects in processivity on telomere length maintenance are not fully known. Germline mutations in telomerase cause haploinsufficiency in syndromes of telomere shortening, which most commonly manifest in the age-related disease idiopathic pulmonary fibrosis. We identified two pulmonary fibrosis families that share two non-synonymous substitutions in the catalytic domain of the telomerase reverse transcriptase gene hTERT: V791I and V867M. The two variants fell on the same hTERT allele and were associated with telomere shortening. Genealogy suggested that the pedigrees shared a single ancestor from the nineteenth century, and genetic studies confirmed the two families had a common founder. Functional studies indicated that, although the double mutant did not dramatically affect first repeat addition, hTERT V791I-V867M showed severe defects in telomere repeat addition processivity in vitro. Our data identify an ancestral mutation in telomerase with a novel loss-of-function mechanism. They indicate that telomere repeat addition processivity is a critical determinant of telomere length and telomere-mediated disease

    Beta-Amyloid Peptides Enhance the Proliferative Response of Activated CD4+CD28+ Lymphocytes from Alzheimer Disease Patients and from Healthy Elderly

    Get PDF
    Alzheimer's disease (AD) is the most frequent form of dementia among elderly. Despite the vast amount of literature on non-specific immune mechanisms in AD there is still little information about the potential antigen-specific immune response in this pathology. It is known that early stages of AD include β-amyloid (Aβ)- reactive antibodies production and inflammatory response. Despite some evidence gathered proving cellular immune response background in AD pathology, the specific reactions of CD4+ and CD8+ cells remain unknown as the previous investigations yielded conflicting results. Here we investigated the CD4+CD28+ population of human peripheral blood T cells and showed that soluble β-amyloids alone were unable to stimulate these cells to proliferate significantly, resulting only in minor, probably antigen-specific, proliferative response. On the other hand, the exposure of in vitro pre-stimulated lymphocytes to soluble Aβ peptides significantly enhanced the proliferative response of these cells which had also lead to increased levels of TNF, IL-10 and IL-6. We also proved that Aβ peptide-enhanced proliferative response of CD4+CD28+ cells is autonomous and independent from disease status while being associated with the initial, ex vivo activation status of the CD4+ cells. In conclusion, we suggest that the effect of Aβ peptides on the immune system of AD patients does not depend on the specific reactivity to Aβ epitope(s), but is rather a consequence of an unspecific modulation of the cell cycle dynamics and cytokine production by T cells, occurring simultaneously in a huge proportion of Aβ peptide-exposed T lymphocytes and affecting the immune system performance

    Multiple Events Lead to Dendritic Spine Loss in Triple Transgenic Alzheimer's Disease Mice

    Get PDF
    The pathology of Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) peptide, hyperphosphorylated tau protein, neuronal death, and synaptic loss. By means of long-term two-photon in vivo imaging and confocal imaging, we characterized the spatio-temporal pattern of dendritic spine loss for the first time in 3xTg-AD mice. These mice exhibit an early loss of layer III neurons at 4 months of age, at a time when only soluble Aβ is abundant. Later on, dendritic spines are lost around amyloid plaques once they appear at 13 months of age. At the same age, we observed spine loss also in areas apart from amyloid plaques. This plaque independent spine loss manifests exclusively at dystrophic dendrites that accumulate both soluble Aβ and hyperphosphorylated tau intracellularly. Collectively, our data shows that three spatio-temporally independent events contribute to a net loss of dendritic spines. These events coincided either with the occurrence of intracellular soluble or extracellular fibrillar Aβ alone, or the combination of intracellular soluble Aβ and hyperphosphorylated tau

    Broadly Neutralizing Human Anti-HIV Antibody 2G12 Is Effective in Protection against Mucosal SHIV Challenge Even at Low Serum Neutralizing Titers

    Get PDF
    Developing an immunogen that elicits broadly neutralizing antibodies (bNAbs) is an elusive but important goal of HIV vaccine research, especially after the recent failure of the leading T cell based HIV vaccine in human efficacy trials. Even if such an immunogen can be developed, most animal model studies indicate that high serum neutralizing concentrations of bNAbs are required to provide significant benefit in typical protection experiments. One possible exception is provided by the anti-glycan bNAb 2G12, which has been reported to protect macaques against CXCR4-using SHIV challenge at relatively low serum neutralizing titers. Here, we investigated the ability of 2G12 administered intravenously (i.v.) to protect against vaginal challenge of rhesus macaques with the CCR5-using SHIVSF162P3. The results show that, at 2G12 serum neutralizing titers of the order of 1∶1 (IC90), 3/5 antibody-treated animals were protected with sterilizing immunity, i.e. no detectable virus replication following challenge; one animal showed a delayed and lowered primary viremia and the other animal showed a course of infection similar to 4 control animals. This result contrasts strongly with the typically high titers observed for protection by other neutralizing antibodies, including the bNAb b12. We compared b12 and 2G12 for characteristics that might explain the differences in protective ability relative to neutralizing activity. We found no evidence to suggest that 2G12 transudation to the vaginal surface was significantly superior to b12. We also observed that the ability of 2G12 to inhibit virus replication in target cells through antibody-mediated effector cell activity in vitro was equivalent or inferior to b12. The results raise the possibility that some epitopes on HIV may be better vaccine targets than others and support targeting the glycan shield of the envelope

    Regulation of peripheral blood flow in Complex Regional Pain Syndrome: clinical implication for symptomatic relief and pain management

    Get PDF
    Background. During the chronic stage of Complex Regional Pain Syndrome (CRPS), impaired microcirculation is related to increased vasoconstriction, tissue hypoxia, and metabolic tissue acidosis in the affected limb. Several mechanisms may be responsible for the ischemia and pain in chronic cold CPRS. Discussion. The diminished blood flow may be caused by either sympathetic dysfunction, hypersensitivity to circulating catecholamines, or endothelial dysfunction. The pain may be of neuropathic, inflammatory, nociceptive, or functional nature, or of mixed origin. Summary. The origin of the pain should be the basis of the symptomatic therapy. Since the difference in temperature between both hands fluctuates over time in cold CRPS, when in doubt, the clinician should prioritize the patient's report of a persistent cold extremity over clinical tests that show no difference. Future research should focus on developing easily applied methods for clinical use to differentiate between central and peripheral blood flow regulation disorders in individual patients
    corecore