26 research outputs found
Characterization of the Metabolic Phenotype of Rapamycin-Treated CD8+ T Cells with Augmented Ability to Generate Long-Lasting Memory Cells
Cellular metabolism plays a critical role in regulating T cell responses and the development of memory T cells with long-term protections. However, the metabolic phenotype of antigen-activated T cells that are responsible for the generation of long-lived memory cells has not been characterized.. than untreated control T cells. In contrast to that control T cells only increased glycolysis, rapamycin-treated T cells upregulated both glycolysis and oxidative phosphorylation (OXPHOS). These rapamycin-treated T cells had greater ability than control T cells to survive withdrawal of either glucose or growth factors. Inhibition of OXPHOS by oligomycin significantly reduced the ability of rapamycin-treated T cells to survive growth factor withdrawal. This effect of OXPHOS inhibition was accompanied with mitochondrial hyperpolarization and elevation of reactive oxygen species that are known to be toxic to cells.Our findings indicate that these rapamycin-treated T cells may represent a unique cell model for identifying nutrients and signals critical to regulating metabolism in both effector and memory T cells, and for the development of new methods to improve the efficacy of adoptive T cell cancer therapy
Effect of annealing temperature on TiO2 nanorod films prepared by dc reactive magnetron sputtering for dye-sensitized solar cells
The anatase TiO2 nanorod films have been prepared on ITO coated glass substrates at room temperature by dc reactive magnetron sputtering technique. The nanorods are highly ordered and are perpendicular to the substrate. XRD measurements show that the anatase nanorods have a preferred orientation along the [110] direction. The prepared nanorods were annealed at different temperatures (200 ºC – 500 ºC) in air for 1 hour. The dye-sensitized solar cells (DSSC) have been made using the as-deposited and annealed TiO2 nanorods as working electrode. It has been found that annealing will improve the efficiency of the DSSC. An optimum conversion efficiency of 2.13%, at 100 mW/cm2 light intensity, has been achieved with TiO2 nanorods annealed at 300 ºC
Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds
Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold–gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon–hydrogen bonds with molecular oxygen