24 research outputs found

    Understanding the nature and mechanism of foot pain

    Get PDF
    Approximately one-quarter of the population are affected by foot pain at any given time. It is often disabling and can impair mood, behaviour, self-care ability and overall quality of life. Currently, the nature and mechanism underlying many types of foot pain is not clearly understood. Here we comprehensively review the literature on foot pain, with specific reference to its definition, prevalence, aetiology and predictors, classification, measurement and impact. We also discuss the complexities of foot pain as a sensory, emotional and psychosocial experience in the context of clinical practice, therapeutic trials and the placebo effect. A deeper understanding of foot pain is needed to identify causal pathways, classify diagnoses, quantify severity, evaluate long term implications and better target clinical intervention

    Dynamic brittle fracture from nonlocal double-well potentials: A state-based model

    No full text
    We introduce a regularized model for free fracture propagation based on nonlocal potentials. We work within the small deformation setting, and the model is developed within a state-based peridynamic formulation. At each instant of the evolution, we identify the softening zone where strains lie above the strength of the material. We show that deformation discontinuities associated with flaws larger than the length scale of nonlocality σ can become unstable and grow. An explicit inequality is found that shows that the volume of the softening zone goes to zero linearly with the length scale of nonlocal interaction. This scaling is consistent with the notion that a softening zone of width proportional to i converges to a sharp fracture set as the length scale of nonlocal interaction goes to zero. Here the softening zone is interpreted as a regularization of the crack network. Inside quiescent regions with no cracks or softening, the nonlocal operator converges to the local elastic operator at a rate proportional to the radius of nonlocal interaction. This model is designed to be calibrated to measured values of critical energy release rate, shear modulus, and bulk modulus of material samples. For this model one is not restricted to Poisson ratios of 1/4 and can choose the potentials so that small strain behavior is specified by the isotropic elasticity tensor for any material with prescribed shear and Lamé moduli

    Dynamic damage propagation with memory: A state-based model

    No full text
    A model for dynamic damage propagation is developed using nonlocal potentials. The model is posed using a state-based peridynamic formulation. The resulting evolution is seen to be well posed. At each instant of the evolution, we identify a damage set. On this set, the local strain has exceeded critical values either for tensile or hydrostatic strain, and damage has occurred. The damage set is nondecreasing with time and is associated with damage state variables defined at each point in the body. We show that a rate form of energy balance holds at each time during the evolution. Away from the damage set, we show that the nonlocal model converges to the linear elastic model in the limit of vanishing nonlocal interaction
    corecore