9 research outputs found

    Quantifying preservation potential: lipid degradation in a Mars-analog circumneutral iron deposit

    Get PDF
    Comparisons between the preservation potential of Mars-analog environments have historically been qualitative rather than quantitative. Recently, however, laboratory-based artificial maturation combined with kinetic modeling techniques have emerged as a potential means by which the preservation potential of solvent-soluble organic matter can be quantified in various Mars-analog environments. These methods consider how elevated temperatures, pressures, and organic–inorganic interactions influence the degradation of organic biomarkers post-burial. We used these techniques to investigate the preservation potential of deposits from a circumneutral iron-rich groundwater system. These deposits are composed of ferrihydrite (Fe5HO8 · 4H2O), an amorphous iron hydroxide mineral that is a common constituent of rocks found in ancient lacustrine environments on Mars, such as those observed in Gale Crater. Both natural and synthetic ferrihydrite samples were subjected to hydrous pyrolysis to observe the effects of long-term burial on the mineralogy and organic content of the samples. Our experiments revealed that organic–inorganic interactions in the samples are dominated by the transformation of iron minerals. As amorphous ferrihydrite transforms into more crystalline species, the decrease in surface area results in the desorption of organic matter, potentially rendering them more susceptible to degradation. We also find that circumneutral iron-rich deposits provide unfavorable conditions for the preservation of solvent-soluble organic matter. Quantitative comparisons between preservation potentials as calculated when using kinetic parameters show that circumneutral iron-rich deposits are ∼25 times less likely to preserve solvent-soluble organic matter compared with acidic, iron-rich environments. Our results suggest that circumneutral iron-rich deposits should be deprioritized in favor of acidic iron- and sulfur-rich deposits when searching for evidence of life with solvent extraction techniques

    Organic geochemistry of in situ thermal-based analyses on Mars: the importance and influence of minerals

    Get PDF
    A high priority goal for past, present and future missions to Mars is the search for evidence of past or present life. Some of the most information-rich signals are those represented by organic biomarkers. Thermal extraction has historically been the most popular in situ analysis technique employed on Mars owing to its elegance and ability to liberate both small compounds and large macromolecular networks. The geological record of Mars contains a variety of minerals, some of which can interact with organic matter when subjected to thermal extraction. Here we discuss the organic records that may be associated with these mineral hosts and the problems encountered when mineral-organic mixtures are analysed by thermal-based methods. We also suggest potential mitigations for future experiments of a similar nature and note that these mitigating steps can be applied not only in situ on Mars but also after samples are returned to Earth as part of Mars Sample Return where more resources and time for sample preparation are available

    Precision in the design and division of the thenar flap: Achieving a good result without dornor complications or PIPJ contracture

    No full text

    The major 8p22 tumor suppressor DLC1 is frequently silenced by methylation in both endemic and sporadic nasopharyngeal, esophageal, and cervical carcinomas, and inhibits tumor cell colony formation

    No full text
    Identification of tumor suppressor genes (TSG) silenced by methylation uncovers mechanisms of tumorigenesis and identifies new epigenetic tumor markers for early cancer detection. Both nasopharyngeal carcinoma (NPC) and esophageal carcinoma are major tumors in Southern China and Southeast Asia. Through expression subtraction of NPC, we identified Deleted in Liver Cancer 1 (DLC1)/ARHGAP7 (NM_006094) - an 8p22 TSG as a major downregulated gene. Although expressed in all normal tissues, DLC1 was silenced or downregulated in 11/12 (91%) NPC, 6/15 (40%) esophageal, 5/8 (63%) cervical and 3/9 (33%) breast carcinoma cell lines. No genetic deletion of DLC1 was detected in NPC although a hemizygous deletion at 8p22-11 was found by 1-Mb array-CGH in some cell lines. We then located the functional DLC1 promoter by 5′-RACE and promoter activity assays. This promoter was frequently methylated in all downregulated cell lines and in a large collection of primary tumors including 89% (64/72) NPC (endemic and sporadic types), 51% (48/94) esophageal, 87% (7/8) cervical and 36% (5/14) breast carcinomas, but seldom in paired surgical marginal tissues and not in any normal epithelial tissue. The transcriptional silencing of DLC1 could be reversed by 5-aza-2′-deoxycytidine or genetic double knock-out of DNMT1 and DNMT3B. Furthermore, ectopic expression of DLC1 in NPC and esophageal carcinoma cells strongly inhibited their colony formation. We thus found frequent epigenetic silencing of DLC1 in NPC, esophageal and cervical carcinomas, and a high correlation of methylation with its downregulation, suggesting a predominant role of epigenetic inactivation. DLC1 appears to be a major TSG implicated in the pathogenesis of these tumors, and should be further tested as a molecular biomarker in patients with these cancers. © 2007 Nature Publishing Group All rights reserved.link_to_subscribed_fulltex

    The surface of halide perovskites from nano to bulk

    No full text
    corecore