8 research outputs found

    Magnetic resonance imaging correlates of neuro-axonal pathology in the MS spinal cord.

    Get PDF
    In people with multiple sclerosis (MS), the spinal cord is the structure most commonly affected by clinically detectable pathology at presentation, and a key part of the central nervous system involved in chronic disease deterioration. Indices, such as the spinal cord cross-sectional area at the level C2 have been developed as tools to predict future disability, and-by inference-axonal loss. However, this and other histo-pathological correlates of spinal cord magnetic resonance imaging (MRI) changes in MS remain incompletely understood. In recent years, there has been a surge of interest in developing quantitative MRI tools to measure specific tissue features, including axonal density, myelin content, neurite density, and orientation, among others, with an emphasis on the spinal cord. Quantitative MRI techniques including T1 and T2 , magnetization transfer and a number of diffusion-derived indices have all been applied to MS spinal cord. Particularly diffusion-based MRI techniques combined with microscopic resolution achievable using high magnetic field scanners enable a new level of anatomical detail and quantification of indices that are clinically meaningful.Barts Charity (grants # 468/1506 & G‐001109

    Analysis of Scalar Maps for the Segmentation of the Corpus Callosum in Diffusion Tensor Fields

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Diffusion tensor imaging (DTI) is a powerful technique for imaging axonal anatomy in vivo and its automatic segmentation is important for quantitative analysis and visualization. Application of the watershed transform is a recent approach for robustly segmenting diffusion tensor images. Since an important step of the watershed-based segmentation is the gradient computation, this paper investigates scalar maps from DTI and their ability to enhance borders and, therefore, their usefulness in gradient calculation. A comparison between existing scalar maps is conducted in the context of segmentation. New diffusion scalar maps, inspired by mathematical morphology concepts are proposed and included in the comparison. The watershed transform is then applied to segment the corpus callosum, based on the computed scalar maps.453SI214226Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Natural Sciences and Engineering Research Council of Canada (NSERC)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Estimating the confidence level of white matter connections obtained with MRI tractography.

    Get PDF
    BACKGROUND: Since the emergence of diffusion tensor imaging, a lot of work has been done to better understand the properties of diffusion MRI tractography. However, the validation of the reconstructed fiber connections remains problematic in many respects. For example, it is difficult to assess whether a connection is the result of the diffusion coherence contrast itself or the simple result of other uncontrolled parameters like for example: noise, brain geometry and algorithmic characteristics. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we propose a method to estimate the respective contributions of diffusion coherence versus other effects to a tractography result by comparing data sets with and without diffusion coherence contrast. We use this methodology to assign a confidence level to every gray matter to gray matter connection and add this new information directly in the connectivity matrix. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that whereas we can have a strong confidence in mid- and long-range connections obtained by a tractography experiment, it is difficult to distinguish between short connections traced due to diffusion coherence contrast from those produced by chance due to the other uncontrolled factors of the tractography methodology

    Diffusion MRI fiber tractography of the brain

    No full text
    The ability of fiber tractography to delineate non-invasively the white matter fiber pathways of the brain raises possibilities for clinical applications and offers enormous potential for neuroscience. In the last decade, fiber tracking has become the method of choice to investigate quantitative MRI parameters in specific bundles of white matter. For neurosurgeons, it is quickly becoming an invaluable tool for the planning of surgery, allowing for visualization and localization of important white matter pathways before and even during surgery. Fiber tracking has also claimed a central role in the field of “connectomics,” a technique that builds and studies comprehensive maps of the complex network of connections within the brain, and to which significant resources have been allocated worldwide. Despite its unique abilities and exciting applications, fiber tracking is not without controversy, in particular when it comes to its interpretation. As neuroscientists are eager to study the brain's connectivity, the quantification of tractography-derived “connection strengths” between distant brain regions is becoming increasingly popular. However, this practice is often frowned upon by fiber-tracking experts. In light of this controversy, this paper provides an overview of the key concepts of tractography, the technical considerations at play, and the different types of tractography algorithm, as well as the common misconceptions and mistakes that surround them. We also highlight the ongoing challenges related to fiber tracking. While recent methodological developments have vastly increased the biological accuracy of fiber tractograms, one should be aware that, even with state-of-the-art techniques, many issues that severely bias the resulting structural “connectomes” remain unresolved
    corecore