4,133 research outputs found

    Catastrophic senescence and semelparity in the Penna aging model

    Full text link
    The catastrophic senescence of the Pacific salmon is among the initial tests used to validate the Penna aging model. Based on the mutation accumulation theory, the sudden decrease in fitness following reproduction may be solely attributed to the semelparity of the species. In this work, we report other consequences of mutation accumulation. Contrary to earlier findings, such dramatic manifestation of aging depends not only on the choice of breeding strategy but also on the value of the reproduction age, R, and the mutation threshold, T. Senescence is catastrophic when TRT \leq R. As the organism's tolerance for harmful genetic mutations increases, the aging process becomes more gradual. We observe senescence that is threshold dependent whenever T>R. That is, the sudden drop in survival rate occurs at age equal to the mutation threshold value

    Cranial Masses in Sickle Cell Disease

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Chromosome phylogeny of the subfamily Pitheciinae (Platyrrhini, Primates) by classic cytogenetics and chromosome painting

    Get PDF
    Background: The New World monkey (Platyrrhini) subfamily Pitheciinae is represented by the genera Pithecia, Chiropotes and Cacajao. In this work we studied the karyotypes of Pithecia irrorata (2n = 48) and Cacajao calvus rubicundus (2n = 45 in males and 2n = 46 in females) by G-and C-banding, NOR staining and chromosome painting using human and Saguinus oedipus whole chromosome probes. The karyotypes of both species were compared with each other and with Chiropotes utahicki (2n = 54) from the literature. Results: Our results show that members of the Pitheciinae have conserved several chromosome forms found in the inferred ancestral Platyrrhini karyotype (associations of human homologous segments 3a/21, 5/7a, 2b/16b, 8a/18, 14/15a and 10a/16a). Further, the monophyly of this subfamily is supported by three chromosomal synapomorphies (2a/10b, an acrocentric 15/14 and an acrocentric human 19 homolog). In addition, each species presents several autapomorphies. From this data set we established a chromosomal phylogeny of Pitheciinae, resulting in a single most parsimonious tree. Conclusions: In our chromosomal phylogeny, the genus Pithecia occurred in a more basal position close to the inferred ancestor of Platyrrhini, while C. c. rubicundus and C. utahicki are closely related and are linked by exclusive synapomorphies

    Critical review of the current and future challenges associated with advanced in vitro systems towards the study of nanoparticle (secondary) genotoxicity.

    Get PDF
    With the need to understand the potential biological impact of the plethora of nanoparticles (NPs) being manufactured for a wide range of potential human applications, due to their inevitable human exposure, research activities in the field of NP toxicology has grown exponentially over the last decade. Whilst such increased research efforts have elucidated an increasingly significant knowledge base pertaining to the potential human health hazard posed by NPs, understanding regarding the possibility for NPs to elicit genotoxicity is limited. In vivo models are unable to adequately discriminate between the specific modes of action associated with the onset of genotoxicity. Additionally, in line with the recent European directives, there is an inherent need to move away from invasive animal testing strategies. Thus, in vitro systems are an important tool for expanding our mechanistic insight into NP genotoxicity. Yet uncertainty remains concerning their validity and specificity for this purpose due to the unique challenges presented when correlating NP behaviour in vitro and in vivo This review therefore highlights the current state of the art in advanced in vitro systems and their specific advantages and disadvantages from a NP genotoxicity testing perspective. Key indicators will be given related to how these systems might be used or improved to enhance understanding of NP genotoxicity

    Quantum systems in weak gravitational fields

    Get PDF
    Fully covariant wave equations predict the existence of a class of inertial-gravitational effects that can be tested experimentally. In these equations inertia and gravity appear as external classical fields, but, by conforming to general relativity, provide very valuable information on how Einstein's views carry through in the world of the quantum.Comment: 22 pages. To be published in Proceedings of the 17th Course of the International School of Cosmology and Gravitation "Advances in the interplay between quantum and gravity physics" edited by V. De Sabbata and A. Zheltukhin, Kluwer Academic Publishers, Dordrech
    corecore