14 research outputs found

    Regeneration of Graft Livers and Limited Contribution of Extrahepatic Cells After Partial Liver Transplantation in Humans

    Get PDF
    Background Liver regeneration is still not fully understood. Partial liver transplantation (LT) can provide the opportunity to investigate the mechanisms of liver regeneration, including the contribution of extrahepatic cells to liver regeneration. Methods Of 61 patients transplanted with partial liver graft between August 1997 and October 2006, 56 patients were studied, including 49 adults and 7 children. Sequential computed tomography volumetric analysis was performed for volume measurement, while proliferating cell nuclear antigen (PCNA) labeling index was investigated for liver cell proliferation in nonprotocol liver biopsy specimens. In addition, 15 male recipients who had female liver grafts were investigated in order to detect Y chromosomes as extrahepatic cells in nonprotocol liver biopsy specimens. Results Graft volume per standard liver volume was markedly increased after adult-to-adult living-donor (LD) LT. In pediatric transplants, there was no volume increase over time. PCNA labeling index was vigorous in adult-to-adult LDLT in the early period after LDLT. No Y chromosome was evident in hepatocytes from female-donor male-recipient grafts during or after liver regeneration. However, in the cases of failing grafts of this type, many Y-chromosome-positive cells were observed in the graft liver. The character of those cells was CD34(−), CK9(−), hepatocyte-specific antigen(−), and CD68(+/−). Conclusion In adult-to-adult LDLT, vigorous liver regeneration occurs in the graft liver, demonstrated by not only volumetric but cell kinetic analysis. Involvement of extrahepatic cells in normal liver regeneration seems limited

    Mesenchymal stem cell as salvage treatment for refractory chronic GVHD

    Get PDF
    Refractory chronic GVHD (cGVHD) is an important complication after allogeneic hematopoietic SCT and is prognostic of poor outcome. MSCs are involved in tissue repair and modulating immune responses in vitro and in vivo. From April 2005 to October 2008, 19 patients with refractory cGVHD were treated with MSCs derived from the BM of volunteers. The median dose of MSCs was 0.6 × 106 cells per kg body weight. Fourteen of 19 patients (73.7%) responded well to MSCs, achieving a CR (n=4) or a PR (n=10). The immunosuppressive agent could be tapered to less than 50% of the starting dose in 5 of 14 surviving patients, and five patients could discontinue immunosuppressive agents. The median duration between MSC administration and immunosuppressive therapy discontinuation was 324 days (range, 200–550 days). No patients experienced adverse events during or immediately after MSC infusion. The 2-year survival rate was 77.7% in this study. Clinical improvement was accompanied by the increasing ratio of CD5+CD19+/CD5−CD19+ B cells and CD8+CD28−/CD8+CD28+ T cells. In conclusion, transfusion of MSCs expanded in vitro, irrespective of the donor, might be a safe and effective salvage therapy for patients with steroid-resistant, cGVHD

    Stem cells in liver regeneration and therapy

    Get PDF
    The liver has adapted to the inflow of ingested toxins by the evolutionary development of unique regenerative properties and responds to injury or tissue loss by the rapid division of mature cells. Proliferation of the parenchymal cells, i.e. hepatocytes and epithelial cells of the bile duct, is regulated by numerous cytokine/growth-factor-mediated pathways and is synchronised with extracellular matrix degradation and restoration of the vasculature. Resident hepatic stem/progenitor cells have also been identified in small numbers in normal liver and implicated in liver tissue repair. Their putative role in the physiology, pathophysiology and therapy of the liver, however, is not yet precisely known. Hepatic stem/progenitor cells also known as “oval cells” in rodents have been implicated in liver tissue repair, at a time when the capacity for hepatocyte and bile duct replication is exhausted or experimentally inhibited (facultative stem/progenitor cell pool). Although much more has to be learned about the role of stem/progenitor cells in the physiology and pathophysiology of the liver, experimental analysis of the therapeutic value of these cells has been initiated. Transplantation of hepatic stem/progenitor cells or in vivo pharmacological activation of the pool of hepatic stem cells may provide novel modalities for the therapy of liver diseases. In addition, extrahepatic stem cells (e.g. bone marrow cells) are being investigated for their contribution to liver regeneration. Hepatic progenitor cells derived from embryonic stem cells are included in this review, which also discusses future perspectives of stem cell-based therapies for liver diseases

    Cell Therapy for Liver Failure: A New Horizon

    No full text

    Cell Therapy for Liver Failure: A New Horizon

    No full text

    Cancer stem cells and tumor-associated macrophages: a roadmap for multitargeting strategies

    No full text
    corecore