7 research outputs found

    The supernatural characters and powers of sacred trees in the Holy Land

    Get PDF
    This article surveys the beliefs concerning the supernatural characteristics and powers of sacred trees in Israel; it is based on a field study as well as a survey of the literature and includes 118 interviews with Muslims and Druze. Both the Muslims and Druze in this study attribute supernatural dimensions to sacred trees which are directly related to ancient, deep-rooted pagan traditions. The Muslims attribute similar divine powers to sacred trees as they do to the graves of their saints; the graves and the trees are both considered to be the abode of the soul of a saint which is the source of their miraculous powers. Any violation of a sacred tree would be strictly punished while leaving the opportunity for atonement and forgiveness. The Druze, who believe in the transmigration of souls, have similar traditions concerning sacred trees but with a different religious background. In polytheistic religions the sacred grove/forest is a centre of the community's official worship; any violation of the trees is regarded as a threat to the well being of the community. Punishments may thus be collective. In the monotheistic world (including Christianity, Islam and Druze) the pagan worship of trees was converted into the worship/adoration of saints/prophets; it is not a part of the official religion but rather a personal act and the punishments are exerted only on the violating individual

    Arctic amplification decreases temperature variance in northern mid- to high-latitudes

    No full text
    Copyright © 2014 Nature Publishing GroupChanges in climate variability are arguably more important for society and ecosystems than changes in mean climate, especially if they translate into altered extremes [1, 2, 3]. There is a common perception and growing concern that human-induced climate change will lead to more volatile and extreme weather [4]. Certain types of extreme weather have increased in frequency and/or severity [5, 6, 7], in part because of a shift in mean climate but also because of changing variability [1, 2, 3, 8, 9, 10]. In spite of mean climate warming, an ostensibly large number of high-impact cold extremes have occurred in the Northern Hemisphere mid-latitudes over the past decade [11]. One explanation is that Arctic amplification—the greater warming of the Arctic compared with lower latitudes [12] associated with diminishing sea ice and snow cover—is altering the polar jet stream and increasing temperature variability [13, 14, 15, 16]. This study shows, however, that subseasonal cold-season temperature variability has significantly decreased over the mid- to high-latitude Northern Hemisphere in recent decades. This is partly because northerly winds and associated cold days are warming more rapidly than southerly winds and warm days, and so Arctic amplification acts to reduce subseasonal temperature variance. Previous hypotheses linking Arctic amplification to increased weather extremes invoke dynamical changes in atmospheric circulation [11, 13, 14, 15, 16], which are hard to detect in present observations [17, 18] and highly uncertain in the future [19, 20]. In contrast, decreases in subseasonal cold-season temperature variability, in accordance with the mechanism proposed here, are detectable in the observational record and are highly robust in twenty-first-century climate model simulations.Natural Environment Research Council (NERC
    corecore