1,021 research outputs found

    New 10Be exposure ages improve Holocene ice sheet thinning history near the grounding line of Pope Glacier, Antarctica

    Get PDF
    Evidence for the timing and pace of past grounding line retreat of the Thwaites Glacier system in the Amundsen Sea embayment (ASE) of Antarctica provides constraints for models that are used to predict the future trajectory of the West Antarctic Ice Sheet (WAIS). Existing cosmogenic nuclide surface exposure ages suggest that Pope Glacier, a former tributary of Thwaites Glacier, experienced rapid thinning in the early to mid-Holocene. There are relatively few exposure ages from the lower ice-free sections of Mount Murphy (< 300 m asl) that are uncomplicated by either nuclide inheritance or scattering due to localised topographic complexities; this makes the trajectory for the latter stages of deglaciation uncertain. This paper presents 12 new 10Be exposure ages from erratic cobbles collected from the western flank of Mt Murphy, within 160 m of the modern ice surface and 1 km from the present grounding line. The ages comprise two tightly clustered populations with mean deglaciation ages of 7.1 ± 0.1 ka and 6.4 ± 0.1 ka (1SE). Linear regression analysis applied to the age-elevation array of all available exposure ages from Mt Murphy indicates that the median rate of thinning of Pope Glacier was 0.27 m yr-1 between 8.1–6.3 ka, occurring 1.5 times faster than previously thought. Furthermore, this analysis better constrains the uncertainty (95 % confidence interval) in the timing of deglaciation at the base of the Mt Murphy vertical profile (~80 m above the modern ice surface), shifting it to earlier in the Holocene (from 5.2 ± 0.7 ka to 6.3 ± 0.4 ka). Taken together, the results presented here suggest that early–mid Holocene thinning of Pope Glacier occurred over a shorter interval than previously assumed and permit a longer duration over which subsequent late Holocene rethickening could have occurred

    MICRO-Foundations in Strategic Management: Squaring Coleman's Diagram

    Get PDF
    Abell, Felin and Foss argue that "macro-explanations" in strategic management, explanations in which organizational routines figure prominently and in which both the explanandum and explanans are at the macro-level, are necessarily incomplete. They take a diagram (which has the form of a trapezoid) from Coleman, Foundations of Social Theory, The Belknap Press of Harvard University Press, Cambridge (Mass.)/London, (1990) to task to show that causal chains connecting two macro-phenomena always involve "macro-to-micro" and "micro-to-macro" links, links that macro-explanations allegedly fail to recognize. Their plea for micro-foundations in strategic management is meant to shed light on these "missing links". The paper argues that while there are good reasons for providing micro-foundations, Abell, Felin and Foss's causal incompleteness argument is not one of them. Their argument does not sufficiently distinguish between causal and constitutive relations. Once these relations are carefully distinguished, it follows that Coleman's diagram has to be squared. This in turn allows us to see that macro-explanations need not be incomplete

    Trapped in the prison of the mind: notions of climate-induced (im)mobility decision-making and wellbeing from an urban informal settlement in Bangladesh

    Get PDF
    The concept of Trapped Populations has until date mainly referred to people ‘trapped’ in environmentally high-risk rural areas due to economic constraints. This article attempts to widen our understanding of the concept by investigating climate-induced socio-psychological immobility and its link to Internally Displaced People’s (IDPs) wellbeing in a slum of Dhaka. People migrated here due to environmental changes back on Bhola Island and named the settlement Bhola Slum after their home. In this way, many found themselves ‘immobile’ after having been mobile—unable to move back home, and unable to move to other parts of Dhaka, Bangladesh, or beyond. The analysis incorporates the emotional and psychosocial aspects of the diverse immobility states. Mind and emotion are vital to better understand people’s (im)mobility decision-making and wellbeing status. The study applies an innovative and interdisciplinary methodological approach combining Q-methodology and discourse analysis (DA). This mixed-method illustrates a replicable approach to capture the complex state of climate-induced (im)mobility and its interlinkages to people’s wellbeing. People reported facing non-economic losses due to the move, such as identity, honour, sense of belonging and mental health. These psychosocial processes helped explain why some people ended up ‘trapped’ or immobile. The psychosocial constraints paralysed them mentally, as well as geographically. More empirical evidence on how climate change influences people’s wellbeing and mental health will be important to provide us with insights in how to best support vulnerable people having faced climatic impacts, and build more sustainable climate policy frameworks

    The Novel Object and Unusual Name (NOUN) database: a collection of novel images for use in experimental research

    Get PDF
    Many experimental research designs require images of novel objects. Here we introduce the Novel Object and Unusual Name (NOUN) Database. This database contains 64 primary novel object images and additional novel exemplars for ten basic- and nine global-level object categories. The objects’ novelty was confirmed by both self-report and a lack of consensus on questions that required participants to name and identify the objects. We also found that object novelty correlated with qualifying naming responses pertaining to the objects’ colors. Results from a similarity sorting task (and subsequent multidimensional scaling analysis on the similarity ratings) demonstrated that the objects are complex and distinct entities that vary along several featural dimensions beyond simply shape and color. A final experiment confirmed that additional item exemplars comprise both sub- and superordinate categories. These images may be useful in a variety of settings, particularly for developmental psychology and other research in language, categorization, perception, visual memory and related domains

    The Terebridae and teretoxins: Combining phylogeny and anatomy for concerted discovery of bioactive compounds

    Get PDF
    The Conoidea superfamily, comprised of cone snails, terebrids, and turrids, is an exceptionally promising group for the discovery of natural peptide toxins. The potential of conoidean toxins has been realized with the distribution of the first Conus (cone snail) drug, Prialt (ziconotide), an analgesic used to alleviate chronic pain in HIV and cancer patients. Cone snail toxins (conotoxins) are highly variable, a consequence of a high mutation rate associated to duplication events and positive selection. As Conus and terebrids diverged in the early Paleocene, the toxins from terebrids (teretoxins) may demonstrate highly divergent and unique functionalities. Recent analyses of the Terebridae, a largely distributed family with more than 300 described species, indicate they have evolutionary and pharmacological potential. Based on a three gene (COI, 12S and 16S) molecular phylogeny, including ~50 species from the West-Pacific, five main terebrid lineages were discriminated: two of these lineages independently lost their venom apparatus, and one venomous lineage was previously unknown. Knowing the phylogenetic relationships within the Terebridae aids in effectively targeting divergent lineages with novel peptide toxins. Preliminary results indicate that teretoxins are similar in structure and composition to conotoxins, suggesting teretoxins are an attractive line of research to discover and develop new therapeutics that target ion channels and receptors. Using conotoxins as a guideline, and innovative natural products discovery strategies, such as the Concerted Discovery Strategy, the potential of the Terebridae and their toxins are explored as a pioneering pharmacological resource

    Associations of plasma fibrinogen assays, C-reactive protein and interleukin-6 with previous myocardial infarction

    Get PDF
    Background: The association of plasma fibrinogen with myocardial infarction (MI) may (like that of C-reactive protein, CRP) be a marker of subclinical inflammation, mediated by cytokines such as interleukin-6 (IL-6). There are well- recognized discrepancies between commonly performed fibrinogen assays. Increased ratio of clottable fibrinogen to intact fibrinogen (measured by a recently developed immunoassay) has been proposed as a measure of hyperfunctional fibrinogen, and is elevated in acute MI.&lt;br/&gt; Objective: To compare the associations of intact fibrinogen and four routine fibrinogen assays (two von Clauss assays; one prothrombin-time derived; and one immunonephelometric) in a case-control study of previous MI. Patients/methods: Cases (n = 399) were recruited 3-9 months after their event; 413 controls were age- and sex-matched from the case-control study local population. Intact fibrinogen was measured in 50% of subjects. Results: All routine fibrinogen assays showed high intercorrelations (r = 0.82-0.93) and significant (P lt 0.0001) increased mean levels in cases vs. controls. These four routine assays correlated only moderately with intact fibrinogen (r = 0.45-0.62), while intact fibrinogen showed only a small, nonsignificant increase in cases vs. controls. Consequently, the ratio of each of the four routine assays to the intact fibrinogen assay was significantly higher (P lt 0.0003) in cases vs. controls. Each fibrinogen assay correlated with plasma levels of CRP and IL-6 (which were also elevated in cases vs. controls). Each routine fibrinogen assay remained significantly elevated in cases vs. controls after further adjustment for C-reactive protein and interleukin-6. Conclusions: These data provide evidence for acquired, increased hyperfunctional plasma fibrinogen in MI survivors, which is not associated with markers of inflammatory reactions. The causes and significance of these results remain to be established in prospective studies

    Climatic Variability Leads to Later Seasonal Flowering of Floridian Plants

    Get PDF
    Understanding species responses to global change will help predict shifts in species distributions as well as aid in conservation. Changes in the timing of seasonal activities of organisms over time may be the most responsive and easily observable indicator of environmental changes associated with global climate change. It is unknown how global climate change will affect species distributions and developmental events in subtropical ecosystems or if climate change will differentially favor nonnative species. Contrary to previously observed trends for earlier flowering onset of plant species with increasing spring temperatures from mid and higher latitudes, we document a trend for delayed seasonal flowering among plants in Florida. Additionally, there were few differences in reproductive responses by native and nonnative species to climatic changes. We argue that plants in Florida have different reproductive cues than those from more northern climates. With global change, minimum temperatures have become more variable within the temperate-subtropical zone that occurs across the peninsula and this variation is strongly associated with delayed flowering among Florida plants. Our data suggest that climate change varies by region and season and is not a simple case of species responding to consistently increasing temperatures across the region. Research on climate change impacts need to be extended outside of the heavily studied higher latitudes to include subtropical and tropical systems in order to properly understand the complexity of regional and seasonal differences of climate change on species responses

    Simulated Warming Differentially Affects the Growth and Competitive Ability of Centaurea maculosa Populations from Home and Introduced Ranges

    Get PDF
    Climate warming may drive invasions by exotic plants, thereby raising concerns over the risks of invasive plants. However, little is known about how climate warming influences the growth and competitive ability of exotic plants from their home and introduced ranges. We conducted a common garden experiment with an invasive plant Centaurea maculosa and a native plant Poa pratensis, in which a mixture of sand and vermiculite was used as a neutral medium, and contrasted the total biomass, competitive effects, and competitive responses of C. maculosa populations from Europe (home range) and North America (introduced range) under two different temperatures. The warming-induced inhibitory effects on the growth of C. maculosa alone were stronger in Europe than in North America. The competitive ability of C. maculosa plants from North America was greater than that of plants from Europe under the ambient condition whereas this competitive ability followed the opposite direction under the warming condition, suggesting that warming may enable European C. maculosa to be more invasive. Across two continents, warming treatment increased the competitive advantage instead of the growth advantage of C. maculosa, suggesting that climate warming may facilitate C. maculosa invasions through altering competitive outcomes between C. maculosa and its neighbors. Additionally, the growth response of C. maculosa to warming could predict its ability to avoid being suppressed by its neighbors
    corecore