6 research outputs found

    Quasi-Double-Blind Screening of Semiochemicals for Reducing Navel Orangeworm Oviposition on Almonds

    Get PDF
    A three-step, quasi-double-bind approach was used as a proof-of-concept study to screen twenty compounds for their ability to reduce oviposition of gravid female navel orangeworm(NOW), Ameylois transitella (Lepidoptera: Pyralidae). First, the panel of compounds, whose identity was unknown to the experimenters, was tested by electroantennogram (EAG) using antennae of two-day old gravid females as the sensing element. Of the twenty compounds tested three showed significant EAG responses. These three EAG-active compounds and a negative control were then analyzed for their ability to reduce oviposition via small-cage, two-choice laboratory assays. Two of the three compounds significantly reduced oviposition under laboratory conditions. Lastly, these two compounds were deployed in a field setting in an organic almond orchard in Arbuckle, CA using black egg traps to monitor NOW oviposition. One of these two compounds significantly reduced oviposition on black egg traps under these field conditions. Compound 9 (later identified as isophorone) showed a significant reduction in oviposition in field assays and thus has a potential as a tool to control the navel orangeworm as a pest of almonds

    Isolation of a slowly adhering cell fraction containing stem cells from murine skeletal muscle by the preplate technique

    No full text
    This protocol details a procedure, known as the modified preplate technique, which is currently used in our laboratory to isolate muscle cells on the basis of selective adhesion to collagen-coated tissue culture plates. By employing this technique to murine skeletal muscle, we have been able to isolate a rapidly adhering cell (RAC) fraction within the earlier stages of the process, whereas a slowly adhering cell (SAC) fraction containing muscle-derived stem cells is obtained from the later stages of the process. This protocol outlines the methods and materials needed to isolate RAC and SAC populations from murine skeletal muscle. The procedure involves mechanical and enzymatic digestion of skeletal muscle tissue with collagenase XI, dispase and trypsin followed by plating the resultant muscle slurry on collagen type I-coated flasks where the cells adhere at different rates. The entire preplate technique requires 5 d to obtain the final preplate SAC population. Two to three additional days are usually required before this population is properly established. We also detail additional methodologies designed to further enrich the resultant cell population by continuing the modified preplating process on the SAC population. This process is known as replating and requires further time
    corecore