1,551 research outputs found
Human immunodeficiency virus infection of the human thymus and disruption of the thymic microenvironment in the SCID-hu mouse.
Infection with the human immunodeficiency virus (HIV) results in immunosuppression and depletion of circulating CD4+ T cells. Since the thymus is the primary organ in which T cells mature it is of interest to examine the effects of HIV infection in this tissue. HIV infection has been demonstrated in the thymuses of infected individuals and thymocytes have been previously demonstrated to be susceptible to HIV infection both in vivo, using the SCID-hu mouse, and in vitro. The present study sought to determine which subsets of thymocytes were infected in the SCID-hu mouse model and to evaluate HIV-related alterations in the thymic microenvironment. Using two different primary HIV isolates, infection was found in CD4+/CD8+ double positive thymocytes as well as in both the CD4+ and CD8+ single positive subsets of thymocytes. The kinetics of infection and resulting viral burden differed among the three thymocyte subsets and depended on which HIV isolate was used for infection. Thymic epithelial (TE) cells were also shown to endocytose virus and to often contain copious amounts of viral RNA in the cytoplasm by in situ hybridization, although productive infection of these cells could not be definitively shown. Furthermore, degenerating TE cells were observed even without detection of HIV in the degenerating cells. Two striking morphologic patterns of infection were seen, involving either predominantly thymocyte infection and depletion, or TE cell involvement with detectable cytoplasmic viral RNA and/or TE cell toxicity. Thus, a variety of cells in the human thymus is susceptible to HIV infection, and infection with HIV results in a marked disruption of the thymic microenvironment leading to depletion of thymocytes and degeneration of TE cells
Single Gene Deletions of Orexin, Leptin, Neuropeptide Y, and Ghrelin Do Not Appreciably Alter Food Anticipatory Activity in Mice
Timing activity to match resource availability is a widely conserved ability in nature. Scheduled feeding of a limited amount of food induces increased activity prior to feeding time in animals as diverse as fish and rodents. Typically, food anticipatory activity (FAA) involves temporally restricting unlimited food access (RF) to several
hours in the middle of the light cycle, which is a time of day when rodents are not normally active. We compared this model to calorie restriction (CR), giving the mice 60% of their normal daily calorie intake at the same time each day. Measurement of body temperature and home cage behaviors suggests that the RF and CR models are very similar but CR has the advantage of a clearly defined food intake and more stable mean body temperature. Using the CR model, we then attempted to verify the published result that orexin deletion diminishes food anticipatory activity (FAA) but observed little to no diminution in the response to CR and, surprisingly, that orexin KO mice are refractory to body weight loss on a CR diet. Next we tested the orexigenic neuropeptide Y (NPY) and ghrelin and the anorexigenic hormone, leptin, using mouse mutants. NPY deletion did not alter the behavior or physiological response to CR. Leptin deletion impaired FAA in terms of some activity measures, such as walking and rearing, but did not substantially diminish hanging behavior preceding feeding time, suggesting that leptin knockout mice do anticipate daily meal time but do not manifest the full spectrum of activities that typify FAA. Ghrelin knockout mice do not have impaired FAA on a CR diet. Collectively, these results suggest that the individual hormones and neuropepetides tested do not regulate FAA by acting individually but this does not rule out the possibility of their concerted action in mediating FAA
Climate Change and invasibility of the Antarctic benthos
Benthic communities living in shallow-shelf habitats in Antarctica (<100-m depth) are archaic in their structure and function. Modern predators, including fast-moving, durophagous (skeleton-crushing) bony fish, sharks, and crabs, are rare or absent; slow-moving invertebrates are the top predators; and epifaunal suspension feeders dominate many soft substratum communities. Cooling temperatures beginning in the late Eocene excluded durophagous predators, ultimately resulting in the endemic living fauna and its unique food-web structure. Although the Southern Ocean is oceanographically isolated, the barriers to biological invasion are primarily physiological rather than geographic. Cold temperatures impose limits to performance that exclude modern predators. Global warming is now removing those physiological barriers, and crabs are reinvading Antarctica. As sea temperatures continue to rise, the invasion of durophagous predators will modernize the shelf benthos and erode the indigenous character of marine life in Antarctica
RSRC1 loss-of-function variants cause mild to moderate autosomal recessive intellectual disability.
The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?
The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework
A preliminary study of the effect of closed incision management with negative pressure wound therapy over high-risk incisions
Background
Certain postoperative wounds are recognised to be associated with more complications than others and may be termed high-risk. Wound healing can be particularly challenging following high-energy trauma where wound necrosis and infection rates are high. Surgical incision for joint arthrodesis can also be considered high-risk as it requires extensive and invasive surgery and postoperative distal limb swelling and wound dehiscence are common. Recent human literature has investigated the use of negative pressure wound therapy (NPWT) over high-risk closed surgical incisions and beneficial effects have been noted including decreased drainage, decreased dehiscence and decreased infection rates. In a randomised, controlled study twenty cases undergoing distal limb high-energy fracture stabilisation or arthrodesis were randomised to NPWT or control groups. All cases had a modified Robert-Jones dressing applied for 72 h postoperatively and NPWT was applied for 24 h in the NPWT group. Morphometric assessment of limb circumference was performed at six sites preoperatively, 24 and 72 h postoperatively. Wound discharge was assessed at 24 and 72 h. Postoperative analgesia protocol was standardised and a Glasgow Composite Measure Pain Score (GCPS) carried out at 24, 48 and 72 h. Complications were noted and differences between groups were assessed.
Results
Percentage change in limb circumference between preoperative and 24 and 72 h postoperative measurements was significantly less at all sites for the NPWT group with exception of the joint proximal to the surgical site and the centre of the operated bone at 72 h. Median discharge score was lower in the NPWT group than the control group at 24 h. No significant differences in GCPS or complication rates were noted.
Conclusions
Digital swelling and wound discharge were reduced when NPWT was employed for closed incision management. Larger studies are required to evaluate whether this will result in reduced discomfort and complication rates postoperatively
Predicting new venture survival and growth: does the fog lift?
This paper investigates whether new venture performance becomes easier to predict as the venture ages: does the fog lift? To address this question we primarily draw upon a theoretical framework, initially formulated in a managerial context by Levinthal (Adm Sci Q 36(3):397–420, 1991) that sees new venture sales as a random walk but survival being determined by the stock of available resources (proxied by size). We derive theoretical predictions that are tested with a 10-year cohort of 6579 UK new ventures in the UK. We observe that our ability to predict firm growth deteriorates in the years after entry—in terms of the selection environment, the ‘fog’ seems to thicken. However, our survival predictions improve with time—implying that the ‘fog’ does lift
Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding
We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics
Modelling avalanches in martensites
Solids subject to continuous changes of temperature or mechanical load often
exhibit discontinuous avalanche-like responses. For instance, avalanche
dynamics have been observed during plastic deformation, fracture, domain
switching in ferroic materials or martensitic transformations. The statistical
analysis of avalanches reveals a very complex scenario with a distinctive lack
of characteristic scales. Much effort has been devoted in the last decades to
understand the origin and ubiquity of scale-free behaviour in solids and many
other systems. This chapter reviews some efforts to understand the
characteristics of avalanches in martensites through mathematical modelling.Comment: Chapter in the book "Avalanches in Functional Materials and
Geophysics", edited by E. K. H. Salje, A. Saxena, and A. Planes. The final
publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-45612-6_
Small-cell lung cancer in England: trends in survival and chemotherapy using the National Lung Cancer Audit
Background: The purpose of this study was to identify trends in survival and chemotherapy use for individuals with smallcell lung cancer (SCLC) in England using the National Lung Cancer Audit (NLCA).
Methods: We used data from the NLCA database to identify people with histologically proven SCLC from 2004–2011. We
calculated the median survival by stage and assessed whether patient characteristics changed over time. We also assessed whether the proportion of patients with records of chemotherapy and/or radiotherapy changed over time.
Results: 18,513 patients were diagnosed with SCLC in our cohort. The median survival was 6 months for all patients, 1 year for those with limited stage and 4 months for extensive stage. 69% received chemotherapy and this proportion changed very slightly over time (test for trends p = 0.055). Age and performance status of patients remained stable over the study period, but the proportion of patients staged increased (p-value,0.001), mainly because of improved data completeness. There has been an increase in the proportion of patients that had a record of receiving both chemotherapy and radiotherapy each year (from 19% to 40% in limited and from 9% to 21% in extensive stage from 2004 to 2011). Patients who received chemotherapy with radiotherapy had better survival compared with any other treatment (HR 0.24, 95% CI 0.23–0.25).
Conclusion: Since 2004, when the NLCA was established, the proportion of patients with SCLC having chemotherapy has remained static. We have found an upward trend in the proportion of patients receiving both chemotherapy and radiotherapy which corresponded to a better survival in this group, but as it only applied for a small proportion of patients, it was not enough to change the overall survival
- …
