314 research outputs found

    "An Impediment to Living Life": Why and How Should We Measure Stiffness in Polymyalgia Rheumatica?

    Get PDF
    Objectives: To explore patients’ concepts of stiffness in polymyalgia rheumatica (PMR), and how they think stiffness should be measured. Methods: Eight focus groups were held at three centres involving 50 patients with current/previous PMR. Each group had at least one facilitator and one rapporteur making field notes. An interview schedule was used to stimulate discussion. Interviews were recorded, transcribed and analysed using an inductive thematic approach. Results: Major themes identified were: symptoms: pain, stiffness and fatigue; functional impact; impact on daily schedule; and approaches to measurement. The common subtheme for the experience of stiffness was “difficulty in moving”, and usually considered as distinct from the experience of pain, albeit with a variable overlap. Some participants felt stiffness was the “overwhelming” symptom, in that it prevented them carrying out “fundamental activities” and “generally living life”. Diurnal variation in stiffness was generally described in relation to the daily schedule but was not the same as stiffness severity. Some participants suggested measuring stiffness using a numeric rating scale or a Likert scale, while others felt that it was more relevant and straightforward to measure difficulty in performing everyday activities rather than about stiffness itself. Conclusions: A conceptual model of stiffness in PMR is presented where stiffness is an important part of the patient experience and impacts on their ability to live their lives. Stiffness is closely related to function and often regarded as interchangeable with pain. From the patients’ perspective, visual analogue scales measuring pain and stiffness were not the most useful method for reporting stiffness; participants preferred numerical rating scales, or assessments of function to reflect how stiffness impacts on their daily lives. Assessing function may be a pragmatic solution to difficulties in quantifying stiffness

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Temporal Trends in Vertebral Size and Shape from Medieval to Modern-Day

    Get PDF
    Human lumbar vertebrae support the weight of the upper body. Loads lifted and carried by the upper extremities cause significant loading stress to the vertebral bodies. It is well established that trauma-induced vertebral fractures are common especially among elderly people. The aim of this study was to investigate the morphological factors that could have affected the prevalence of trauma-related vertebral fractures from medieval times to the present day. To determine if morphological differences existed in the size and shape of the vertebral body between medieval times and the present day, the vertebral body size and shape was measured from the 4th lumbar vertebra using magnetic resonance imaging (MRI) and standard osteometric calipers. The modern samples consisted of modern Finns and the medieval samples were from archaeological collections in Sweden and Britain. The results show that the shape and size of the 4th lumbar vertebra has changed significantly from medieval times in a way that markedly affects the biomechanical characteristics of the lumbar vertebral column. These changes may have influenced the incidence of trauma- induced spinal fractures in modern populations

    The saffire experiment: Large-scale combustion aboard spacecraft

    Get PDF
    As part of the Saffire project, solid materials were burned aboard orbiting spacecraft in two sets of experiments. The materials, mounted within a large air flow duct, were substantially larger than fuel samples in all previous microgravity tests. Large-than-typical samples could be accommodated because the tests were remotely conducted in unmanned ISS supply vehicles just days before their controlled re-entry and burn-up in the atmosphere. In the first experiment, a large cotton-fiberglass fabric measuring 40.6 × 94 cm was burned in two separate tests (concurrent and opposed). In the second experiment, nine samples measuring 5 × 30 cm in area were burned in succession. Of these nine, two were sheets of cotton-fiberglass fabric, identical to the material burned in the first experiment, and were burned in the concurrent-flow configuration. Two digital video cameras were used to record flame behavior and spread rate. Other diagnostics included radiometers, thermocouples, oxygen, and carbon dioxide sensors. Results demonstrate the unique features of purely forced flow in microgravity on flame spread, the dependence of flame behavior on the scale of the experiment, and the importance of full-scale testing for spacecraft fire safety

    Viral FLICE Inhibitory Protein of Rhesus Monkey Rhadinovirus Inhibits Apoptosis by Enhancing Autophagosome Formation

    Get PDF
    Rhesus monkey rhadinovirus (RRV) is a gamma-2 herpesvirus closely related to human herpesvirus 8 (HHV8). RRV encodes viral FLICE inhibitory protein (vFLIP), which has death effector domains. Little is known about RRV vFLIP. This study intended to examine its function in apoptosis. Here we found that RRV vFLIP inhibits apoptosis induced by tumor necrosis factor-α (TNF-α) and cycloheximide. In HeLa cells with vFLIP expression, the cleavage of poly [ADP-ribose] polymerase 1 (PARP-1) and activities of caspase 3, 7, and 9 were much lower than those in controls. Cell viability of HeLa cells with vFLIP expression was significantly higher than control cells after apoptosis induction. However, RRV vFLIP appears unable to induce NF-κB signaling when tested in NF-κB reporter assay. RRV vFLIP was able to enhance cell survival under starved conditions or apoptosis induction. At early time points after apoptosis induction, autophagosome formation was enhanced and LC3-II level was elevated in cells with vFLIP and, when autophagy was blocked with chemical inhibitors, these cells underwent apoptosis. Moreover, RRV latent infection of BJAB B-lymphoblastoid cells protects the cells against apoptosis by enhancing autophagy to maintain cell survival. Knockdown of vFLIP expression in the RRV-infected BJAB cells with siRNA abolished the protection against apoptosis. These results indicate that vFLIP protects cells against apoptosis by enhancing autophagosome formation to extend cell survival. The finding of vFLIP’s inhibition of apoptosis via the autophagy pathway provides insights of vFLIP in RRV pathogenesis

    Classifying RNA-Binding Proteins Based on Electrostatic Properties

    Get PDF
    Protein structure can provide new insight into the biological function of a protein and can enable the design of better experiments to learn its biological roles. Moreover, deciphering the interactions of a protein with other molecules can contribute to the understanding of the protein's function within cellular processes. In this study, we apply a machine learning approach for classifying RNA-binding proteins based on their three-dimensional structures. The method is based on characterizing unique properties of electrostatic patches on the protein surface. Using an ensemble of general protein features and specific properties extracted from the electrostatic patches, we have trained a support vector machine (SVM) to distinguish RNA-binding proteins from other positively charged proteins that do not bind nucleic acids. Specifically, the method was applied on proteins possessing the RNA recognition motif (RRM) and successfully classified RNA-binding proteins from RRM domains involved in protein–protein interactions. Overall the method achieves 88% accuracy in classifying RNA-binding proteins, yet it cannot distinguish RNA from DNA binding proteins. Nevertheless, by applying a multiclass SVM approach we were able to classify the RNA-binding proteins based on their RNA targets, specifically, whether they bind a ribosomal RNA (rRNA), a transfer RNA (tRNA), or messenger RNA (mRNA). Finally, we present here an innovative approach that does not rely on sequence or structural homology and could be applied to identify novel RNA-binding proteins with unique folds and/or binding motifs

    Functional characterization of the human myosin-7a motor domain

    Get PDF
    Myosin-7a participates in auditory and visual processes. Defects in MYO7A, the gene encoding the myosin-7a heavy chain, are causative for Usher syndrome 1B, the most frequent cause of deaf-blindness in humans. In the present study, we performed a detailed kinetic and functional characterization of the isolated human myosin-7a motor domain to elucidate the details of chemomechanical coupling and the regulation of motor function. A rate-limiting, slow ADP release step causes long lifetimes of strong actin-binding intermediates and results in a high duty ratio. Moreover, our results reveal a Mg2+-sensitive regulatory mechanism tuning the kinetic and mechanical properties of the myosin-7a motor domain. We obtained direct evidence that changes in the concentration of free Mg2+ ions affect the motor properties of human myosin-7a using an in vitro motility assay system. Our results suggest that in a cellular environment, compartment-specific fluctuations in free Mg2+ ions can mediate the conditional switching of myosin-7a between cargo moving and tension bearing modes

    Kaposi's Sarcoma-Associated Herpesvirus-Encoded LANA Down-Regulates IL-22R1 Expression through a Cis-Acting Element within the Promoter Region

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV) is considered to be a necessary, but not sufficient, causal agent of Kaposi's sarcoma (KS). All forms of KS are characterized by the proliferation of spindle-shaped cells, and most (>90%) spindle cells from KS lesions are latently infected with KSHV. During KSHV latency, only a few viral genes are expressed. Among those latent genes, the ORF 73 gene encodes the latency-associated nuclear antigen (LANA), which is critical for the establishment and maintenance of the latent KSHV infection. Much evidence suggests that many cytokines can increase the frequency and aggressiveness of KS. In this study, a microarray analysis of KS and normal tissues revealed that multiple cytokines and cytokine receptors are regulated by KSHV latent infection. Of special interest, IL-22R1 transcript level was found to be down-regulated in the KS tissue. To study the possible regulation of IL-22R1 by LANA, the IL-22R1 promoter was constructed and found to contain a LANA-binding site (LBS). LANA was demonstrated to down-regulate IL-22R1 expression via direct binding to the LBS located within the IL-22R1 promoter region. Furthermore, KSHV latently infected cells showed an impaired response to IL-22 stimulation. These results suggest that LANA can regulate host factor expression by directly binding to a cis-acting element within the factor's promoter to benefit latent viral infection and suppression of the antiviral immune response

    American ginseng suppresses Western diet-promoted tumorigenesis in model of inflammation-associated colon cancer: role of EGFR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Western diets increase colon cancer risk. Epidemiological evidence and experimental studies suggest that ginseng can inhibit colon cancer development. In this study we asked if ginseng could inhibit Western diet (20% fat) promoted colonic tumorigenesis and if compound K, a microbial metabolite of ginseng could suppress colon cancer xenograft growth.</p> <p>Methods</p> <p>Mice were initiated with azoxymethane (AOM) and, two weeks later fed a Western diet (WD, 20% fat) alone, or WD supplemented with 250-ppm ginseng. After 1 wk, mice received 2.5% dextran sulfate sodium (DSS) for 5 days and were sacrificed 12 wks after AOM. Tumors were harvested and cell proliferation measured by Ki67 staining and apoptosis by TUNEL assay. Levels of EGF-related signaling molecules and apoptosis regulators were determined by Western blotting. Anti-tumor effects of intraperitoneal compound K were examined using a tumor xenograft model and compound K absorption measured following oral ginseng gavage by UPLC-mass spectrometry. Effects of dietary ginseng on microbial diversity were measured by analysis of bacterial 16S rRNA.</p> <p>Results</p> <p>Ginseng significantly inhibited colonic inflammation and tumorigenesis and concomitantly reduced proliferation and increased apoptosis. The EGFR cascade was up-regulated in colonic tumors and ginseng significantly reduced EGFR and ErbB2 activation and Cox-2 expression. Dietary ginseng altered colonic microbial diversity, and bacterial suppression with metronidazole reduced serum compound K following ginseng gavage. Furthermore, compound K significantly inhibited tumor xenograft growth.</p> <p>Conclusions</p> <p>Ginseng inhibited colonic inflammation and tumorigenesis promoted by Western diet. We speculate that the ginseng metabolite compound K contributes to the chemopreventive effects of this agent in colonic tumorigenesis.</p
    corecore