98 research outputs found

    Hydrogen Sulfide Protects against Chemical Hypoxia-Induced Cytotoxicity and Inflammation in HaCaT Cells through Inhibition of ROS/NF-κB/COX-2 Pathway

    Get PDF
    Hydrogen sulfide (H2S) has been shown to protect against oxidative stress injury and inflammation in various hypoxia-induced insult models. However, it remains unknown whether H2S protects human skin keratinocytes (HaCaT cells) against chemical hypoxia-induced damage. In the current study, HaCaT cells were treated with cobalt chloride (CoCl2), a well known hypoxia mimetic agent, to establish a chemical hypoxia-induced cell injury model. Our findings showed that pretreatment of HaCaT cells with NaHS (a donor of H2S) for 30 min before exposure to CoCl2 for 24 h significantly attenuated CoCl2-induced injuries and inflammatory responses, evidenced by increases in cell viability and GSH level and decreases in ROS generation and secretions of IL-1β, IL-6 and IL-8. In addition, pretreatment with NaHS markedly reduced CoCl2-induced COX-2 overexpression and PGE2 secretion as well as intranuclear NF-κB p65 subunit accumulation (the central step of NF-κB activation). Similar to the protective effect of H2S, both NS-398 (a selective COX-2 inhibitor) and PDTC (a selective NF-κB inhibitor) depressed not only CoCl2-induced cytotoxicity, but also the secretions of IL-1β, IL-6 and IL-8. Importantly, PDTC obviously attenuated overexpression of COX-2 induced by CoCl2. Notably, NAC, a ROS scavenger, conferred a similar protective effect of H2S against CoCl2-induced insults and inflammatory responses. Taken together, the findings of the present study have demonstrated for the first time that H2S protects HaCaT cells against CoCl2-induced injuries and inflammatory responses through inhibition of ROS-activated NF-κB/COX-2 pathway

    Significant Association of Estrogen Receptor Binding Site Variation with Bipolar Disorder in Females

    Get PDF
    Major depression is nearly twice as prevalent in women compared to men. In bipolar disorder, depressive episodes have been reported to be more common amongst female patients. Furthermore, periods of depression often correlate with periods of hormonal fluctuations. A link between hormone signaling and these mood disorders has, therefore, been suggested to exist in many studies. Estrogen, one of the primary female sex hormones, mediates its effect mostly by binding to estrogen receptors (ERs). Nuclear ERs function as transcription factors and regulate gene transcription by binding to specific DNA sequences. A nucleotide change in the binding sequence might alter the binding efficiency, which could affect transcription levels of nearby genes. In order to investigate if variation in ER DNA-binding sequences may be involved in mood disorders, we conducted a genome-wide study of ER DNA-binding in patients diagnosed with major depression or bipolar disorder. Association studies were performed within each gender separately and the results were corrected for multiple testing by the Bonferroni method. In the female bipolar disorder material a significant association result was found for rs6023059 (corrected p-value = 0.023; odds ratio (OR) 0.681, 95% confidence interval (CI) 0.570–0.814), a single nucleotide polymorphism (SNP) placed downstream of the gene coding for transglutaminase 2 (TGM2). Thus, females with a specific genotype at this SNP may be more vulnerable to fluctuating estrogen levels, which may then act as a triggering factor for bipolar disorder

    Selected isotope ratio measurements of light metallic elements (Li, Mg, Ca, and Cu) by multiple collector ICP-MS

    Get PDF
    The unique capabilities of multiple collector inductively coupled mass spectrometry (MC-ICP-MS) for high precision isotope ratio measurements in light elements as Li, Mg, Ca, and Cu are reviewed in this paper. These elements have been intensively studied at the Geological Survey of Israel (GSI) and other laboratories over the past few years, and the methods used to obtain high precision isotope analyses are discussed in detail. The scientific study of isotopic fractionation of these elements is significant for achieving a better understanding of geochemical and biochemical processes in nature and the environment

    Effects of typical and atypical antipsychotic drugs on gene expression profiles in the liver of schizophrenia subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although much progress has been made on antipsychotic drug development, precise mechanisms behind the action of typical and atypical antipsychotics are poorly understood.</p> <p>Methods</p> <p>We performed genome-wide expression profiling to study effects of typical antipsychotics and atypical antipsychotics in the postmortem liver of schizophrenia patients using microarrays (Affymetrix U133 plus2.0). We classified the subjects into typical antipsychotics (n = 24) or atypical antipsychotics (n = 26) based on their medication history, and compared gene expression profiles with unaffected controls (n = 34). We further analyzed individual antipsychotic effects on gene expression by sub-classifying the subjects into four major antipsychotic groups including haloperidol, phenothiazines, olanzapine and risperidone.</p> <p>Results</p> <p>Typical antipsychotics affected genes associated with nuclear protein, stress responses and phosphorylation, whereas atypical antipsychotics affected genes associated with golgi/endoplasmic reticulum and cytoplasm transport. Comparison between typical antipsychotics and atypical antipsychotics further identified genes associated with lipid metabolism and mitochondrial function. Analyses on individual antipsychotics revealed a set of genes (151 transcripts, FDR adjusted p < 0.05) that are differentially regulated by four antipsychotics, particularly by phenothiazines, in the liver of schizophrenia patients.</p> <p>Conclusion</p> <p>Typical antipsychotics and atypical antipsychotics affect different genes and biological function in the liver. Typical antipsychotic phenothiazines exert robust effects on gene expression in the liver that may lead to liver toxicity. The genes found in the current study may benefit antipsychotic drug development with better therapeutic and side effect profiles.</p

    Epigallocatechin-3-gallate: a useful, effective and safe clinical approach for targeted prevention and individualised treatment of neurological diseases?

    Get PDF

    A Guide to Medications Inducing Salivary Gland Dysfunction, Xerostomia, and Subjective Sialorrhea: A Systematic Review Sponsored by the World Workshop on Oral Medicine VI

    Get PDF

    Non-ionic Thermoresponsive Polymers in Water

    Full text link

    Voluntary disclosure of precision information

    No full text
    This paper presents a model of an entrepreneur's acquisition and voluntary disclosure of precision information as a supplement to primary disclosure of an estimate of a tradable asset's value. Our analysis shows that equilibrium disclosure can be characterized by four regions. For estimates above (below) the prior expectation of the asset value, the entrepreneur discloses only high (low) precision information. The main idea is to enhance (diminish) confidence in estimates that improve upon (detract from) prior beliefs. We further show that the entrepreneur over-invests in the acquisition of precision information due to the option value of discretion over disclosure. (C) 2003 Elsevier B.V. All rights reserved
    corecore