18 research outputs found

    Clinical implications of a possible role of vitamin D in multiple sclerosis

    Get PDF
    Hypovitaminosis D is currently one of the most studied environmental risk factors for multiple sclerosis (MS) and is potentially the most promising in terms of new clinical implications. These practical consequences, which could be applied to MS patients without further delay, constitute the main purpose of this review. Vitamin D is involved in a number of important general actions, which were not even suspected until quite recently. In particular, this vitamin could play an immunomodulatory role in the central nervous system. Many and varied arguments support a significant role for vitamin D in MS. In animal studies, vitamin D prevents and improves experimental autoimmune encephalomyelitis. Epidemiologically, latitude, past exposure to sun and the serum level of vitamin D influence the risk of MS, with, furthermore, significant links existing between these different factors. Clinically, most MS patients have low serum levels of vitamin D and are in a state of insufficiency or even deficiency compared to the international norm, which has been established on a metabolic basis. Large therapeutic trials using vitamin D are still lacking but the first results of phase I/II studies are promising. In the meantime, while awaiting the results of future therapeutic trials, it can no longer be ignored that many MS patients have a lack of vitamin D, which could be detected by a serum titration and corrected using an appropriate vitamin D supplementation in order to restore their serum level to within the normal range. From a purely medical point of view, vitamin D supplementation appears in this light to be unavoidable in order to improve the general state of these patients. Furthermore, it cannot currently be ruled out that this supplementation could also be neurologically beneficial

    The heritage of glatiramer acetate and its use in multiple sclerosis

    No full text
    Multiple sclerosis (MS) is a chronic and progressively debilitating disease of the central nervous system. Treatment of MS involves disease-modifying therapies (DMTs) to reduce the incidence of relapses and prevent disease progression. Glatiramer acetate (Copaxone®) was the first of the currently approved DMTs to be tested in human subjects, and it is still considered a standard choice for first-line treatment. The mechanism of action of glatiramer acetate appears to be relatively complex and has not been completely elucidated, but it is likely that it involves both immunomodulating and neuroprotective properties. The efficacy of glatiramer acetate 20 mg/mL once daily as first-line treatment in relapsing-remitting MS is well established, with ample evidence of efficacy from both placebo-controlled and active-comparator controlled clinical trials as well as real-world studies. There is also a considerable body of evidence indicating that the efficacy of glatiramer acetate is maintained in the long term. Clinical trial and real-world data have also consistently shown glatiramer acetate to be safe and well tolerated. Notably, glatiramer acetate has a good safety profile in women planning a pregnancy, and is not associated with foetal toxicity. Until recently, glatiramer acetate was only approved as 20 mg/mL once daily, but a new formulation with less frequent administration, 40 mg/mL three times weekly, has been developed and is now approved in many countries, including Italy. This review examines the mechanism of action, clinical efficacy, safety and tolerability of glatiramer acetate to provide suggestions for optimizing the use of this drug in the current MS therapeutic scenario

    Neuroinflammatory and demyelinating disorders of childhood

    No full text
    In this chapter, we will review monophasic and recurrent demyelinating disorders in children. We will first review consensus definitions and provide an approach to the evaluation of children with first episode of acquired demyelinating disorder. We will discuss typical clinical and radiological features of these syndromes. In the second section, we will review features of recurrent demyelinating syndromes in children, focusing on clinical presentation and treatment options

    Neuroinflammatory and demyelinating disorders of childhood

    No full text
    In this chapter, we will review monophasic and recurrent demyelinating disorders in children. We will first review consensus definitions and provide an approach to the evaluation of children with first episode of acquired demyelinating disorder. We will discuss typical clinical and radiological features of these syndromes. In the second section, we will review features of recurrent demyelinating syndromes in children, focusing on clinical presentation and treatment options
    corecore