428 research outputs found

    Learning Control of Quantum Systems

    Full text link
    This paper provides a brief introduction to learning control of quantum systems. In particular, the following aspects are outlined, including gradient-based learning for optimal control of quantum systems, evolutionary computation for learning control of quantum systems, learning-based quantum robust control, and reinforcement learning for quantum control.Comment: 9 page

    Non-nosocomial healthcare-associated infective endocarditis in Taiwan: an underrecognized disease with poor outcome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-nosocomial healthcare-associated infective endocarditis (NNHCA-IE) is a new category of IE of increasing importance. This study described the clinical and microbiological characteristics and outcome of NNHCA-IE in Taiwan.</p> <p>Methods</p> <p>A retrospective study was conducted of all patients with IE admitted to the Kaohsiung Veterans General Hospital in Kaohsiung, Taiwan over a five-year period from July 2004 to July 2009. The clinical and microbiological features of NNHCA-IE were compared to those of community-acquired and nosocomial IE. Predictors for in-hospital death were determined.</p> <p>Results</p> <p>Two-hundred episodes of confirmed IE occurred during the study period. These included 148 (74%) community-acquired, 30 (15%) non-nosocomial healthcare-associated, and 22 (11%) nosocomial healthcare-associated IE. <it>Staphylococcus aureus </it>was the most frequent pathogen. Patients with NNHCA-IE compared to community-acquired IE, were older (median age, 67 vs. 44, years, <it>p </it>< 0.001), had more MRSA (43.3% vs. 9.5%, <it>p </it>< 0.001), more comorbidity conditions (median Charlson comorbidity index [interquartile range], 4[2-6] vs. 0[0-1], <it>p </it>< 0.001), a higher in-hospital mortality (50.0% vs. 17.6%, <it>p </it>< 0.001) and were less frequently recognized by clinicians on admission (16.7% vs. 47.7%, <it>p </it>= 0.002). The overall in-hospital mortality rate for all patients with IE was 25%. Shock was the strongest risk factor for in-hospital death (odds ratio 7.8, 95% confidence interval 2.4-25.2, <it>p </it>< 0.001).</p> <p>Conclusions</p> <p>NNHCA-IE is underrecognized and carries a high mortality rate. Early recognition is crucial to provide optimal management and improve outcome.</p

    3D Mapping of the SPRY2 Domain of Ryanodine Receptor 1 by Single-Particle Cryo-EM

    Get PDF
    The type 1 skeletal muscle ryanodine receptor (RyR1) is principally responsible for Ca2+ release from the sarcoplasmic reticulum and for the subsequent muscle contraction. The RyR1 contains three SPRY domains. SPRY domains are generally known to mediate protein-protein interactions, however the location of the three SPRY domains in the 3D structure of the RyR1 is not known. Combining immunolabeling and single-particle cryo-electron microscopy we have mapped the SPRY2 domain (S1085-V1208) in the 3D structure of RyR1 using three different antibodies against the SPRY2 domain. Two obstacles for the image processing procedure; limited amount of data and signal dilution introduced by the multiple orientations of the antibody bound in the tetrameric RyR1, were overcome by modifying the 3D reconstruction scheme. This approach enabled us to ascertain that the three antibodies bind to the same region, to obtain a 3D reconstruction of RyR1 with the antibody bound, and to map SPRY2 to the periphery of the cytoplasmic domain of RyR1. We report here the first 3D localization of a SPRY2 domain in any known RyR isoform

    Absence of CD34 on Murine Skeletal Muscle Satellite Cells Marks a Reversible State of Activation during Acute Injury

    Get PDF
    Background: Skeletal muscle satellite cells are myogenic progenitors that reside on myofiber surface beneath the basal lamina. In recent years satellite cells have been identified and isolated based on their expression of CD34, a sialomucin surface receptor traditionally used as a marker of hematopoietic stem cells. Interestingly, a minority of satellite cells lacking CD34 has been described. Methodology/Principal Findings: In order to elucidate the relationship between CD34+ and CD34- satellite cells we utilized fluorescence-activated cell sorting (FACS) to isolate each population for molecular analysis, culture and transplantation studies. Here we show that unless used in combination with a7 integrin, CD34 alone is inadequate for purifying satellite cells. Furthermore, the absence of CD34 marks a reversible state of activation dependent on muscle injury. Conclusions/Significance: Following acute injury CD34- cells become the major myogenic population whereas the percentage of CD34+ cells remains constant. In turn activated CD34- cells can reverse their activation to maintain the pool of CD34+ reserve cells. Such activation switching and maintenance of reserve pool suggests the satellite cell compartment is tightly regulated during muscle regeneration

    A comparison of ARMS and direct sequencing for EGFR mutation analysis and Tyrosine Kinase Inhibitors treatment prediction in body fluid samples of Non-Small-Cell Lung Cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidermal growth factor receptor (<it>EGFR</it>) mutation is strongly associated with the therapeutic effect of tyrosine kinase inhibitors (TKIs) in patients with non-small-cell lung cancer (NSCLC). Nevertheless, tumor tissue that needed for mutation analysis is frequently unavailable. Body fluid was considered to be a feasible substitute for the analysis, but arising problems in clinical practice such as relatively lower mutation rate and poor clinical correlation are not yet fully resolved.</p> <p>Method</p> <p>In this study, 50 patients (32 pleural fluids and 18 plasmas) with TKIs therapy experience and with direct sequencing results were selected from 220 patients for further analysis. The <it>EGFR </it>mutation status was re-evaluated by Amplification Refractory Mutation System (ARMS), and the clinical outcomes of TKIs were analyzed retrospectively.</p> <p>Results</p> <p>As compared with direct sequencing, 16 positive and 23 negative patients were confirmed by ARMS, and the other 11 former negative patients (6 pleural fluids and 5 plasmas) were redefined as positive, with a fairly well clinical outcome (7 PR, 3 SD, and 1 PD). The objective response rate (ORR) of positive patients was significant, 81.3% (direct sequencing) and 72.7% (ARMS) for pleural fluids, and 80% (ARMS) for plasma. Notably, even reclassified by ARMS, the ORR for negative patients was still relatively high, 60% for pleural fluids and 46.2% for plasma.</p> <p>Conclusions</p> <p>When using body fluids for <it>EGFR </it>mutation analysis, positive result is consistently a good indicator for TKIs therapy, and the predictive effect was no less than that of tumor tissue, no matter what method was employed. However, even reclassified by ARMS, the correlation between negative results and clinical outcome of TKIs was still unsatisfied. The results indicated that false negative mutation still existed, which may be settled by using method with sensitivity to single DNA molecule or by optimizing the extraction procedure with RNA or CTC to ensure adequate amount of tumor-derived nucleic acid for the test.</p

    Automated functional classification of experimental and predicted protein structures

    Get PDF
    BACKGROUND: Proteins that are similar in sequence or structure may perform different functions in nature. In such cases, function cannot be inferred from sequence or structural similarity. RESULTS: We analyzed experimental structures belonging to the Structural Classification of Proteins (SCOP) database and showed that about half of them belong to multi-functional fold families for which protein similarity alone is not adequate to assign function. We also analyzed predicted structures from the LiveBench and the PDB-CAFASP experiments and showed that accurate homology-based functional assignments cannot be achieved approximately one third of the time, when the protein is a member of a multi-functional fold family. We then conducted extended performance evaluation and comparisons on both experimental and predicted structures using our Functional Signatures from Structural Alignments (FSSA) algorithm that we previously developed to handle the problem of classifying proteins belonging to multi-functional fold families. CONCLUSION: The results indicate that the FSSA algorithm has better accuracy when compared to homology-based approaches for functional classification of both experimental and predicted protein structures, in part due to its use of local, as opposed to global, information for classifying function. The FSSA algorithm has also been implemented as a webserver and is available at

    TSPY is a cancer testis antigen expressed in human hepatocellular carcinoma

    Get PDF
    In search for genes associated with hepatocellular carcinoma (HCC) by cDNA microarray, we found that the transcription of TSPY, ‘testis-specific protein Y-encoded', was upregulated in HCC. Investigation of a broad spectrum of normal and malignant tissues by RT–PCR revealed the TSPY transcript selectively expressed in normal testis, different histological types of human neoplastic tissues, and tumour cell lines. The expression of TSPY in cancer cells was further confirmed by in situ hybridisation. Indirect immunofluorescence microscopy analysis showed that TSPY was localised mainly in the cytoplasm of transiently transfected cells. Testis-specific protein Y-encoded was detected in 50% (16 of 32) of well- and moderately differentiated HCC patients, in 16% (four of 25) of poorly differentiated HCC patients, and in 5% (one of 19) of renal cell cancer patients. A serological survey revealed that 6.6% (seven of 106) HCC patients had anti-TSPY antibody response, demonstrating the immunogenicity of TSPY in humans. In conclusion, these data suggest that TSPY is a novel cancer/testis (CT) antigen and may be a potential candidate in vaccine strategy for immunotherapy in HCC patients

    A hybrid BAC physical map of potato: a framework for sequencing a heterozygous genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Potato is the world's third most important food crop, yet cultivar improvement and genomic research in general remain difficult because of the heterozygous and tetraploid nature of its genome. The development of physical map resources that can facilitate genomic analyses in potato has so far been very limited. Here we present the methods of construction and the general statistics of the first two genome-wide BAC physical maps of potato, which were made from the heterozygous diploid clone RH89-039-16 (RH).</p> <p>Results</p> <p>First, a gel electrophoresis-based physical map was made by AFLP fingerprinting of 64478 BAC clones, which were aligned into 4150 contigs with an estimated total length of 1361 Mb. Screening of BAC pools, followed by the KeyMaps <it>in silico </it>anchoring procedure, identified 1725 AFLP markers in the physical map, and 1252 BAC contigs were anchored the ultradense potato genetic map. A second, sequence-tag-based physical map was constructed from 65919 whole genome profiling (WGP) BAC fingerprints and these were aligned into 3601 BAC contigs spanning 1396 Mb. The 39733 BAC clones that overlap between both physical maps provided anchors to 1127 contigs in the WGP physical map, and reduced the number of contigs to around 2800 in each map separately. Both physical maps were 1.64 times longer than the 850 Mb potato genome. Genome heterozygosity and incomplete merging of BAC contigs are two factors that can explain this map inflation. The contig information of both physical maps was united in a single table that describes hybrid potato physical map.</p> <p>Conclusions</p> <p>The AFLP physical map has already been used by the Potato Genome Sequencing Consortium for sequencing 10% of the heterozygous genome of clone RH on a BAC-by-BAC basis. By layering a new WGP physical map on top of the AFLP physical map, a genetically anchored genome-wide framework of 322434 sequence tags has been created. This reference framework can be used for anchoring and ordering of genomic sequences of clone RH (and other potato genotypes), and opens the possibility to finish sequencing of the RH genome in a more efficient way via high throughput next generation approaches.</p
    • …
    corecore