25 research outputs found

    Application of the rainbow trout derived intestinal cell line (RTgutGC) for ecotoxicological studies: molecular and cellular responses following exposure to copper.

    Get PDF
    There is an acknowledged need for in vitro fish intestinal model to help understand dietary exposure to chemicals in the aquatic environment. The presence and use of such models is however largely restrictive due to technical difficulties in the culturing of enterocytes in general and the availability of appropriate established cell lines in particular. In this study, the rainbow trout (Oncorhynchus mykiss) intestinal derived cell line (RTgutGC) was used as a surrogate for the "gut sac" method. To facilitate comparison, RTgutGC cells were grown as monolayers (double-seeded) on permeable Transwell supports leading to a two-compartment intestinal model consisting of polarised epithelium. This two-compartment model divides the system into an upper apical (lumen) and a lower basolateral (portal blood) compartment. In our studies, these cells stained weakly for mucosubstances, expressed the tight junction protein ZO-1 in addition to E-cadherin and revealed the presence of polarised epithelium in addition to microvilli protrusions. The cells also revealed a comparable transepithelial electrical resistance (TEER) to the in vivo situation. Importantly, the cell line tolerated apical saline (1:1 ratio) thus mimicking the intact organ to allow assessment of uptake of compounds across the intestine. Following an exposure over 72 h, our study demonstrated that the RTgutGC cell line under sub-lethal concentrations of copper sulphate (Cu) and modified saline solutions demonstrated uptake of the metal with saturation levels comparable to short term ex situ gut sac preparations. Gene expression analysis revealed no significant influence of pH or time on mRNA expression levels of key stress related genes (i.e. CYP3A, GST, mtA, Pgp and SOD) in the Transwell model. However, significant positive correlations were found between all genes investigated suggesting a co-operative relationship amongst the genes studied. When the outlined characteristics of the cell line are combined with the division of compartments, the RTgutGC double seeded model represents a potential animal replacement model for ecotoxicological studies. Overall, this model could be used to study the effects and predict aquatic gastrointestinal permeability of metals and other environmentally relevant contaminants in a cost effective and high throughput manner

    Biophysical Characterization of the Strong Stabilization of the RNA Triplex poly(U)•poly(A)*poly(U) by 9-O-(ω-amino) Alkyl Ether Berberine Analogs

    Get PDF
    Background: Binding of two 9-O-(v-amino) alkyl ether berberine analogs BC1 and BC2 to the RNA triplex poly(U)Npoly(A)*poly(U) was studied by various biophysical techniques. Methodology/Principal Findings: Berberine analogs bind to the RNA triplex non-cooperatively. The affinity of binding was remarkably high by about 5 and 15 times, respectively, for BC1 and BC2 compared to berberine. The site size for the binding was around 4.3 for all. Based on ferrocyanide quenching, fluorescence polarization, quantum yield values and viscosity results a strong intercalative binding of BC1 and BC2 to the RNA triplex has been demonstrated. BC1 and BC2 stabilized the Hoogsteen base paired third strand by about 18.1 and 20.5uC compared to a 17.5uC stabilization by berberine. The binding was entropy driven compared to the enthalpy driven binding of berbeine, most likely due to additional contacts within the grooves of the triplex and disruption of the water structure by the alkyl side chain. Conclusions/Significance: Remarkably higher binding affinity and stabilization effect of the RNA triplex by the amino alkyl berberine analogs was achieved compared to berberine. The length of the alkyl side chain influence in the triplex stabilization phenomena

    Temporal Segregation of the Australian and Antarctic Blue Whale Call Types (Balaenoptera musculus spp.)

    Full text link
    We examined recordings from a 15-month (May 2009-July 2010) continuous acoustic data set collected from a bottom-mounted passive acoustic recorder at a sample frequency of 6 kHz off Portland, Victoria, Australia (38°33′01″S, 141°15′13″E) off southern Australia. Analysis revealed that calls from both subspecies were recorded at this site, and general additive modeling revealed that the number of calls varied significantly across seasons. Antarctic blue whales were detected more frequently from July to October 2009 and June to July 2010, corresponding to the suspected breeding season, while Australian blue whales were recorded more frequently from March to June 2010, coinciding with the feeding season. In both subspecies, the number of calls varied with time of day; Antarctic blue whale calls were more prevalent in the night to early morning, while Australian blue whale calls were detected more often from midday to early evening. Using passive acoustic monitoring, we show that each subspecies adopts different seasonal and daily call patterns which may be related to the ecological strategies of these subspecies. This study demonstrates the importance of passive acoustics in enabling us to understand and monitor subtle differences in the behavior and ecology of cryptic sympatric marine mammals

    Calls reveal population structure of blue whales across the Southeast Indian Ocean and the Southwest Pacific Ocean

    Full text link
    For effective species management, understanding population structure and distribution is critical. However, quantifying population structure is not always straightforward. Within the Southern Hemisphere, the blue whale (Balaenoptera musculus) complex is extremely diverse but difficult to study. Using automated detector methods, we identified "acoustic populations" of whales producing region-specific call types. We examined blue whale call types in passive acoustic data at sites spanning over 7,370 km across the southeast Indian Ocean and southwest Pacific Ocean (SWPO) from 2009 to 2012. In the absence of genetic resolution, these acoustic populations offer unique information about the blue whale population complex. We found that the Australian continent acts as a geographic boundary, separating Australia and New Zealand blue whale acoustic populations at the junction of the Indian and Pacific Ocean basins. We located blue whales in previously undocumented locations, including the far SWPO, in the Tasman Sea off the east coast of Australia, and along the Lau Basin near Tonga. Our understanding of population dynamics across this broad scale has significant implications to recovery and conservation management for this endangered species, at a regional and global scale
    corecore