25 research outputs found

    Socio-cultural influences on the behaviour of South Asian women with diabetes in pregnancy: qualitative study using a multi-level theoretical approach

    Get PDF
    BACKGROUND: Diabetes in pregnancy is common in South Asians, especially those from low-income backgrounds, and leads to short-term morbidity and longer-term metabolic programming in mother and offspring. We sought to understand the multiple influences on behaviour (hence risks to metabolic health) of South Asian mothers and their unborn child, theorise how these influences interact and build over time, and inform the design of culturally congruent, multi-level interventions. METHODS: Our sample for this qualitative study was 45 women of Bangladeshi, Indian, Sri Lankan, or Pakistani origin aged 21-45 years with a history of diabetes in pregnancy, recruited from diabetes and antenatal services in two deprived London boroughs. Overall, 17 women shared their experiences of diabetes, pregnancy, and health services in group discussions and 28 women gave individual narrative interviews, facilitated by multilingual researchers, audiotaped, translated, and transcribed. Data were analysed using the constant comparative method, drawing on sociological and narrative theories. RESULTS: Key storylines (over-arching narratives) recurred across all ethnic groups studied. Short-term storylines depicted the experience of diabetic pregnancy as stressful, difficult to control, and associated with negative symptoms, especially tiredness. Taking exercise and restricting diet often worsened these symptoms and conflicted with advice from relatives and peers. Many women believed that exercise in pregnancy would damage the fetus and drain the mother's strength, and that eating would be strength-giving for mother and fetus. These short-term storylines were nested within medium-term storylines about family life, especially the cultural, practical, and material constraints of the traditional South Asian wife and mother role and past experiences of illness and healthcare, and within longer-term storylines about genetic, cultural, and material heritage - including migration, acculturation, and family memories of food insecurity. While peer advice was familiar, meaningful, and morally resonant, health education advice from clinicians was usually unfamiliar and devoid of cultural meaning. CONCLUSIONS: 'Behaviour change' interventions aimed at preventing and managing diabetes in South Asian women before and during pregnancy are likely to be ineffective if delivered in a socio-cultural vacuum. Individual education should be supplemented with community-level interventions to address the socio-material constraints and cultural frames within which behavioural 'choices' are made

    Cofactor-mediated conformational control in the bifunctional kinase/RNase Ire1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ire1 is a signal transduction protein in the endoplasmic reticulum (ER) membrane that serves to adjust the protein-folding capacity of the ER according to the needs of the cell. Ire1 signals, in a transcriptional program, the unfolded protein response (UPR) via the coordinated action of its protein kinase and RNase domains. In this study, we investigated how the binding of cofactors to the kinase domain of Ire1 modulates its RNase activity.</p> <p>Results</p> <p>Our results suggest that the kinase domain of Ire1 initially binds cofactors without activation of the RNase domain. RNase is activated upon a subsequent conformational rearrangement of Ire1 governed by the chemical properties of bound cofactors. The conformational step can be selectively inhibited by chemical perturbations of cofactors. Substitution of a single oxygen atom in the terminal β-phosphate group of a potent cofactor ADP by sulfur results in ADPβS, a cofactor that binds to Ire1 as well as to ADP but does not activate RNase. RNase activity can be rescued by thiophilic metal ions such as Mn<sup>2+ </sup>and Cd<sup>2+</sup>, revealing a functional metal ion-phosphate interaction which controls the conformation and RNase activity of the Ire1 ADP complex. Mutagenesis of the kinase domain suggests that this rearrangement involves movement of the ιC-helix, which is generally conserved among protein kinases. Using X-ray crystallography, we show that oligomerization of Ire1 is sufficient for placing the ιC-helix in the active, cofactor-bound-like conformation, even in the absence of cofactors.</p> <p>Conclusions</p> <p>Our structural and biochemical evidence converges on a model that the cofactor-induced conformational change in Ire1 is coupled to oligomerization of the receptor, which, in turn, activates RNase. The data reveal that cofactor-Ire1 interactions occur in two independent steps: binding of a cofactor to Ire1 and subsequent rearrangement of Ire1 resulting in its self-association. The pronounced allosteric effect of cofactors on protein-protein interactions involving Ire1's kinase domain suggests that protein kinases and pseudokinases encoded in metazoan genomes may use ATP pocket-binding ligands similarly to exert signaling roles other than phosphoryl transfer.</p

    Structural and functional basis for RNA cleavage by Ire1

    Get PDF
    BACKGROUND: The unfolded protein response (UPR) controls the protein folding capacity of the endoplasmic reticulum (ER). Central to this signaling pathway is the ER-resident bifunctional transmembrane kinase/endoribonuclease Ire1. The endoribonuclease (RNase) domain of Ire1 initiates a non-conventional mRNA splicing reaction, leading to the production of a transcription factor that controls UPR target genes. The mRNA splicing reaction is an obligatory step of Ire1 signaling, yet its mechanism has remained poorly understood due to the absence of substrate-bound crystal structures of Ire1, the lack of structural similarity between Ire1 and other RNases, and a scarcity of quantitative enzymological data. Here, we experimentally define the active site of Ire1 RNase and quantitatively evaluate the contribution of the key active site residues to catalysis. RESULTS: This analysis and two new crystal structures suggest that Ire1 RNase uses histidine H1061 and tyrosine Y1043 as the general acid-general base pair contributing \u3e/=7.6 kcal/mol and 1.4 kcal/mol to transition state stabilization, respectively, and asparagine N1057 and arginine R1056 for coordination of the scissile phosphate. Investigation of the stem-loop recognition revealed that additionally to the stem-loops derived from the classic Ire1 substrates HAC1 and Xbp1 mRNA, Ire1 can site-specifically and rapidly cleave anticodon stem-loop (ASL) of unmodified tRNAPhe, extending known substrate specificity of Ire1 RNase. CONCLUSIONS: Our data define the catalytic center of Ire1 RNase and suggest a mechanism of RNA cleavage: each RNase monomer apparently contains a separate catalytic apparatus for RNA cleavage, whereas two RNase subunits contribute to RNA stem-loop docking. Conservation of the key residues among Ire1 homologues suggests that the mechanism elucidated here for yeast Ire1 applies to Ire1 in metazoan cells, and to the only known Ire1 homologue RNase L

    The unfolded protein response signals through high-order assembly of Ire1

    No full text
    Aberrant folding of proteins in the endoplasmic reticulum activates the bifunctional transmembrane kinase/endoribonuclease Ire1. Ire1 excises an intron from HAC1 messenger RNA in yeasts and Xbp1 messenger RNA in metozoans encoding homologous transcription factors. This non-conventional mRNA splicing event initiates the unfolded protein response, a transcriptional program that relieves the endoplasmic reticulum stress. Here we show that oligomerization is central to Ire1 function and is an intrinsic attribute of its cytosolic domains. We obtained the 3.2-Å crystal structure of the oligomer of the Ire1 cytosolic domains in complex with a kinase inhibitor that acts as a potent activator of the Ire1 RNase. The structure reveals a rod-shaped assembly that has no known precedence among kinases. This assembly positions the kinase domain for trans-autophosphorylation, orders the RNase domain, and creates an interaction surface for binding of the mRNA substrate. Activation of Ire1 through oligomerization expands the mechanistic repertoire of kinase-based signalling receptors
    corecore