36 research outputs found

    The effectiveness of psychosocial interventions for anxiety in children and adolescents with autism spectrum disorder:a systematic review and meta-analysis

    Get PDF
    Anxiety is a common problem in children and adolescents with autism spectrum disorder (ASD). This meta-analysis aimed to systematically evaluate the evidence for the use of psychosocial interventions to manage anxiety in this population. Cognitive behavioural therapy (CBT) was the primary intervention modality studied. A comprehensive systematic search and study selection process was conducted. Separate statistical analyses were carried out for clinician-, parent-, and self-reported outcome measures. Sensitivity analyses were conducted by removing any outlying studies and any studies that did not use a CBT intervention. A subgroup analysis was performed to compare individual and group delivery of treatment. Ten randomised control trials involving a total of 470 participants were included. The overall SMD was d = 1.05 (95 % CI 0.45, 1.65; z = 3.45, p = 0.0006) for clinician- reported outcome measures; d = 1.00 (95%CI 0.21, 1.80; z = 2.47, p = 0.01) for parent-reported outcome measures; and d = 0.65 (95%CI -0.10, 1.07; z = 1.63, p = 0.10) for self-reported outcome measures. Clinician- and parent-reported outcome measures showed that psychosocial interventions were superior to waitlist and treatment-as-usual control conditions at post-treatment. However, the results of self-reported outcome measures failed to reach significance. The sensitivity analyses did not significantly change these results and the subgroup analysis indicated that individual treatment was more effective than group treatment. The main limitations of this review were the small number of included studies as well as the clinical and methodological variability between studies

    Interplay between estrogen receptor and AKT in estradiol-induced alternative splicing.

    Get PDF
    BACKGROUND: Alternative splicing is critical for generating complex proteomes in response to extracellular signals. Nuclear receptors including estrogen receptor alpha (ERα) and their ligands promote alternative splicing. The endogenous targets of ERα:estradiol (E2)-mediated alternative splicing and the influence of extracellular kinases that phosphorylate ERα on E2-induced splicing are unknown. METHODS: MCF-7 and its anti-estrogen derivatives were used for the majority of the assays. CD44 mini gene was used to measure the effect of E2 and AKT on alternative splicing. ExonHit array analysis was performed to identify E2 and AKT-regulated endogenous alternatively spliced apoptosis-related genes. Quantitative reverse transcription polymerase chain reaction was performed to verify alternative splicing. ERα binding to alternatively spliced genes was verified by chromatin immunoprecipitation assay. Bromodeoxyuridine incorporation-ELISA and Annexin V labeling assays were done to measure cell proliferation and apoptosis, respectively. RESULTS: We identified the targets of E2-induced alternative splicing and deconstructed some of the mechanisms surrounding E2-induced splicing by combining splice array with ERα cistrome and gene expression array. E2-induced alternatively spliced genes fall into at least two subgroups: coupled to E2-regulated transcription and ERα binding to the gene without an effect on rate of transcription. Further, AKT, which phosphorylates both ERα and splicing factors, influenced ERα:E2 dependent splicing in a gene-specific manner. Genes that are alternatively spliced include FAS/CD95, FGFR2, and AXIN-1. E2 increased the expression of FGFR2 C1 isoform but reduced C3 isoform at mRNA level. E2-induced alternative splicing of FAS and FGFR2 in MCF-7 cells correlated with resistance to FAS activation-induced apoptosis and response to keratinocyte growth factor (KGF), respectively. Resistance of MCF-7 breast cancer cells to the anti-estrogen tamoxifen was associated with ERα-dependent overexpression of FGFR2, whereas resistance to fulvestrant was associated with ERα-dependent isoform switching, which correlated with altered response to KGF. CONCLUSION: E2 may partly alter cellular proteome through alternative splicing uncoupled to its effects on transcription initiation and aberration in E2-induced alternative splicing events may influence response to anti-estrogens.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Evolutionary potential and adaptation of Banksia attenuata (Proteaceae) to climate and fire regime in southwestern Australia, a global biodiversity hotspot

    Get PDF
    Substantial climate changes are evident across Australia, with declining rainfall and rising temperature in conjunction with frequent fires. Considerable species loss and range contractions have been predicted; however, our understanding of how genetic variation may promote adaptation in response to climate change remains uncertain. Here we characterized candidate genes associated with rainfall gradients, temperatures, and fire intervals through environmental association analysis. We found that overall population adaptive genetic variation was significantly affected by shortened fire intervals, whereas declining rainfall and rising temperature did not have a detectable influence. Candidate SNPs associated with rainfall and high temperature were diverse, whereas SNPs associated with specific fire intervals were mainly fixed in one allele. Gene annotation further revealed four genes with functions in stress tolerance, the regulation of stomatal opening and closure, energy use, and morphogenesis with adaptation to climate and fire intervals. B. attenuata may tolerate further changes in rainfall and temperature through evolutionary adaptations based on their adaptive genetic variation. However, the capacity to survive future climate change may be compromised by changes in the fire regime

    Transcriptional profile of breast muscle in heat stressed layers is similar to that of broiler chickens at control temperature

    Get PDF
    Abstract Background In recent years, the commercial importance of changes in muscle function of broiler chickens and of the corresponding effects on meat quality has increased. Furthermore, broilers are more sensitive to heat stress during transport and at high ambient temperatures than smaller egg-laying chickens. We hypothesised that heat stress would amplify muscle damage and expression of genes that are involved in such changes and, thus, lead to the identification of pathways and networks associated with broiler muscle and meat quality traits. Broiler and layer chickens were exposed to control or high ambient temperatures to characterise differences in gene expression between the two genotypes and the two environments. Results Whole-genome expression studies in breast muscles of broiler and layer chickens were conducted before and after heat stress; 2213 differentially-expressed genes were detected based on a significant (P < 0.05) genotype × treatment interaction. This gene set was analysed with the BioLayout Express3D and Ingenuity Pathway Analysis software and relevant biological pathways and networks were identified. Genes involved in functions related to inflammatory reactions, cell death, oxidative stress and tissue damage were upregulated in control broilers compared with control and heat-stressed layers. Expression of these genes was further increased in heat-stressed broilers. Conclusions Differences in gene expression between broiler and layer chickens under control and heat stress conditions suggest that damage of breast muscles in broilers at normal ambient temperatures is similar to that in heat-stressed layers and is amplified when broilers are exposed to heat stress. The patterns of gene expression of the two genotypes under heat stress were almost the polar opposite of each other, which is consistent with the conclusion that broiler chickens were not able to cope with heat stress by dissipating their body heat. The differentially expressed gene networks and pathways were consistent with the pathological changes that are observed in the breast muscle of heat-stressed broilers

    Screening of candidate adenovirus expressing shRNAs for functional recovery of dF508-CFTR

    No full text
    Devising molecular strategies that overcome ΔF508 folding and trafficking defects comprise a central objective of CF therapeutic development. An understanding of disease mechanisms can be improved by new method(s) and/or compounds that redirect ΔF508-CFTR to the plasma membrane. RNA interference (siRNA) mediated knock-down of gene expression has proven to be a powerful tool for investigating protein function(s) and advancing drug discovery. BioFocus (a Galapagos company) has developed adenoviral vectors expressing small hairpin RNAs (shRNAs) for genomewide functional screening that allow robust transduction and durable gene repression. In this project, sixty-eight adenoviral-shRNA constructs (targeting 28 high priority genes) were provided by BioFocus to five collaborating laboratories in the United States and Canada. Putative gene targets were identified by a consortium-based review of the existing CF literature. Each research group established independent protocols to investigate effect(s) of gene knock-down (via Ad-shRNA) on ΔF508-CFTR maturation. Protocols included 1) A study of CF bronchial epithelial cells expressing the halide sensitive variant of eYFP and measurement of ΔF508-CFTR activity at the cell surface. 2) Short circuit current in primary human bronchial epithelial cells (ΔF508/ΔF508), 3) Appearance of rescued ΔF508 CFTR at the plasma membrane in CF bronchial epithelial cells monitored biochemically, 4) Effects on CFTR-dependent release of inflammatory markers (chemokines and cytokines) from IB3 cells (ΔF508/W1282X), and 5) Short circuit current and Western blotting in CFBE cells transduced with lentivirus encoding ΔF508-CFTR. Preliminary results indicate significant activity of BioFocus shRNAs in several of the independent protocols and laboratories, particularly against gene products such as AHSA1 and 2 (activators of HSP 90) and HDAC7A (a member of the histone deacetylase family). A profile of shRNAs found to improve ΔF508 processing, including spectrum of activity data and gene-network annotation of the relevant pathways, will be presented. Identifying the most robust molecular targets for ΔF508 CFTR correction (from among hundreds of candidates in the CFTR “interactome”) has been limited by the complexity of the relevant cellular pathways. The studies described here provide a means by which chaperones and other contributors to CFTR misprocessing can be evaluated, prioritized, and better understood in the future for development of new therapeutic approaches and delineating genetic modifiers that contribute to variation in severity of CF onset and disease progression. The project represents a collaboration among members of the CFTR Folding Consortium. Supported by the CFF and NIH
    corecore