260 research outputs found

    Evidence from Individual Inference for High-Dimensional Coexistence: Long-Term Experiments on Recruitment Response

    Get PDF
    Background: For competing species to coexist, individuals must compete more with others of the same species than with those of other species. Ecologists search for tradeoffs in how species might partition the environment. The negative correlations among competing species that would be indicative of tradeoffs are rarely observed. A recent analysis showed that evidence for partitioning the environment is available when responses are disaggregated to the individual scale, in terms of the covariance structure of responses to environmental variation. That study did not relate that variation to the variables to which individuals were responding. To understand how this pattern of variation is related to niche variables, we analyzed responses to canopy gaps, long viewed as a key variable responsible for species coexistence. Methodology/Principal Findings: A longitudinal intervention analysis of individual responses to experimental canopy gaps with 12 yr of pre-treatment and 8 yr post-treatment responses showed that species-level responses are positively correlated – species that grow fast on average in the understory also grow fast on average in response to gap formation. In other words, there is no tradeoff. However, the joint distribution of individual responses to understory and gap showed a negative correlation – species having individuals that respond most to gaps when previously growing slowly also have individuals that respond least to gaps when previously growing rapidly (e.g., Morus rubra), and vice versa (e.g., Quercus prinus). Conclusions/Significance: Because competition occurs at the individual scale, not the species scale, aggregated speciesleve

    CAP defines a second signalling pathway required for insulin-stimulated glucose transport

    Full text link
    Insulin stimulates the transport of glucose into fat and muscle cells. Although the precise molecular mechanisms involved in this process remain uncertain, insulin initiates its actions by binding to its tyrosine kinase receptor, leading to the phosphorylation of intracellular substrates. One such substrate is the Cbl protooncogene product(1). Cbl is recruited to the insulin receptor by interaction with the adapter protein CAP, through one of three adjacent SH3 domains in the carboxy terminus of CAP(2). Upon phosphorylation of Cbl, the CAP-Cbl complex dissociates from the insulin receptor and moves to a caveolin-enriched, triton-insoluble membrane fraction(3). Here, to identify a molecular mechanism underlying this subcellular redistribution, we screened a yeast two-hybrid library using the amino-terminal region of CAP and identified the caveolar protein flotillin. Flotillin forms a ternary complex with CAP and Cbl, directing the localization of the CAP-Cbl complex to a lipid raft subdomain of the plasma membrane. Expression of the N-terminal domain of CAP in 3T3-L1 adipocytes blocks the stimulation of glucose transport by insulin, without affecting signalling events that depend on phosphatidylinositol-3-OH kinase. Thus, localization of the Cbl-CAP complex to lipid rafts generates a pathway that is crucial in the regulation of glucose uptake.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62940/1/407202a0.pd

    Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions

    Get PDF
    During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph

    Empirical Bayes analysis of single nucleotide polymorphisms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An important goal of whole-genome studies concerned with single nucleotide polymorphisms (SNPs) is the identification of SNPs associated with a covariate of interest such as the case-control status or the type of cancer. Since these studies often comprise the genotypes of hundreds of thousands of SNPs, methods are required that can cope with the corresponding multiple testing problem. For the analysis of gene expression data, approaches such as the empirical Bayes analysis of microarrays have been developed particularly for the detection of genes associated with the response. However, the empirical Bayes analysis of microarrays has only been suggested for binary responses when considering expression values, i.e. continuous predictors.</p> <p>Results</p> <p>In this paper, we propose a modification of this empirical Bayes analysis that can be used to analyze high-dimensional categorical SNP data. This approach along with a generalized version of the original empirical Bayes method are available in the R package siggenes version 1.10.0 and later that can be downloaded from <url>http://www.bioconductor.org</url>.</p> <p>Conclusion</p> <p>As applications to two subsets of the HapMap data show, the empirical Bayes analysis of microarrays cannot only be used to analyze continuous gene expression data, but also be applied to categorical SNP data, where the response is not restricted to be binary. In association studies in which typically several ten to a few hundred SNPs are considered, our approach can furthermore be employed to test interactions of SNPs. Moreover, the posterior probabilities resulting from the empirical Bayes analysis of (prespecified) interactions/genotypes can also be used to quantify the importance of these interactions.</p

    Interaction between genetic and epigenetic variation defines gene expression patterns at the asthma-associated locus 17q12-q21 in lymphoblastoid cell lines

    Get PDF
    Phenotypic variation results from variation in gene expression, which is modulated by genetic and/or epigenetic factors. To understand the molecular basis of human disease, interaction between genetic and epigenetic factors needs to be taken into account. The asthma-associated region 17q12-q21 harbors three genes, the zona pellucida binding protein 2 (ZPBP2), gasdermin B (GSDMB) and ORM1-like 3 (ORMDL3), that show allele-specific differences in expression levels in lymphoblastoid cell lines (LCLs) and CD4+ T cells. Here, we report a molecular dissection of allele-specific transcriptional regulation of the genes within the chromosomal region 17q12-q21 combining in vitro transfection, formaldehyde-assisted isolation of regulatory elements, chromatin immunoprecipitation and DNA methylation assays in LCLs. We found that a single nucleotide polymorphism rs4795397 influences the activity of ZPBP2 promoter in vitro in an allele-dependent fashion, and also leads to nucleosome repositioning on the asthma-associated allele. However, variable methylation of exon 1 of ZPBP2 masks the strong genetic effect on ZPBP2 promoter activity in LCLs. In contrast, the ORMDL3 promoter is fully unmethylated, which allows detection of genetic effects on its transcription. We conclude that the cis-regulatory effects on 17q12-q21 gene expression result from interaction between several regulatory polymorphisms and epigenetic factors within the cis-regulatory haplotype region

    The Co-Morbidity Burden of Children and Young Adults with Autism Spectrum Disorders

    Get PDF
    Objectives: Use electronic health records Autism Spectrum Disorder (ASD) to assess the comorbidity burden of ASD in children and young adults. Study Design: A retrospective prevalence study was performed using a distributed query system across three general hospitals and one pediatric hospital. Over 14,000 individuals under age 35 with ASD were characterized by their co-morbidities and conversely, the prevalence of ASD within these comorbidities was measured. The comorbidity prevalence of the younger (Age<18 years) and older (Age 18–34 years) individuals with ASD was compared. Results: 19.44% of ASD patients had epilepsy as compared to 2.19% in the overall hospital population (95% confidence interval for difference in percentages 13.58–14.69%), 2.43% of ASD with schizophrenia vs. 0.24% in the hospital population (95% CI 1.89–2.39%), inflammatory bowel disease (IBD) 0.83% vs. 0.54% (95% CI 0.13–0.43%), bowel disorders (without IBD) 11.74% vs. 4.5% (95% CI 5.72–6.68%), CNS/cranial anomalies 12.45% vs. 1.19% (95% CI 9.41–10.38%), diabetes mellitus type I (DM1) 0.79% vs. 0.34% (95% CI 0.3–0.6%), muscular dystrophy 0.47% vs 0.05% (95% CI 0.26–0.49%), sleep disorders 1.12% vs. 0.14% (95% CI 0.79–1.14%). Autoimmune disorders (excluding DM1 and IBD) were not significantly different at 0.67% vs. 0.68% (95% CI −0.14-0.13%). Three of the studied comorbidities increased significantly when comparing ages 0–17 vs 18–34 with p<0.001: Schizophrenia (1.43% vs. 8.76%), diabetes mellitus type I (0.67% vs. 2.08%), IBD (0.68% vs. 1.99%) whereas sleeping disorders, bowel disorders (without IBD) and epilepsy did not change significantly. Conclusions: The comorbidities of ASD encompass disease states that are significantly overrepresented in ASD with respect to even the patient populations of tertiary health centers. This burden of comorbidities goes well beyond those routinely managed in developmental medicine centers and requires broad multidisciplinary management that payors and providers will have to plan for
    corecore