231 research outputs found

    PEEP-ZEEP technique: cardiorespiratory repercussions in mechanically ventilated patients submitted to a coronary artery bypass graft surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The PEEP-ZEEP technique is previously described as a lung inflation through a positive pressure enhancement at the end of expiration (PEEP), followed by rapid lung deflation with an abrupt reduction in the PEEP to 0 cmH<sub>2</sub>O (ZEEP), associated to a manual bilateral thoracic compression.</p> <p>Aim</p> <p>To analyze PEEP-ZEEP technique's repercussions on the cardio-respiratory system in immediate postoperative artery graft bypass patients.</p> <p>Methods</p> <p>15 patients submitted to a coronary artery bypass graft surgery (CABG) were enrolled prospectively, before, 10 minutes and 30 minutes after the technique. Patients were curarized, intubated, and mechanically ventilated. To perform PEEP-ZEEP technique, saline solution was instilled into their orotracheal tube than the patient was reconnected to the ventilator. Afterwards, the PEEP was increased to 15 cmH<sub>2</sub>O throughout 5 ventilatory cycles and than the PEEP was rapidly reduced to 0 cmH<sub>2</sub>O along with manual bilateral thoracic compression. At the end of the procedure, tracheal suction was accomplished.</p> <p>Results</p> <p>The inspiratory peak and plateau pressures increased during the procedure (p < 0.001) compared with other pressures during the assessment periods; however, they were within lung safe limits. The expiratory flow before the procedure were 33 ± 7.87 L/min, increasing significantly during the procedure to 60 ± 6.54 L/min (p < 0.001), diminishing to 35 ± 8.17 L/min at 10 minutes and to 36 ± 8.48 L/min at 30 minutes. Hemodynamic and oxygenation variables were not altered.</p> <p>Conclusion</p> <p>The PEEP-ZEEP technique seems to be safe, without alterations on hemodynamic variables, produces elevated expiratory flow and seems to be an alternative technique for the removal of bronchial secretions in patients submitted to a CABG.</p

    New result for the neutron β\beta-asymmetry parameter A0A_0 from UCNA

    Full text link
    The neutron β\beta-decay asymmetry parameter A0A_0 defines the correlation between the spin of the neutron and the momentum of the emitted electron, which determines λ=gAgV\lambda=\frac{g_{A}}{g_{V}}, the ratio of the axial-vector to vector weak coupling constants. The UCNA Experiment, located at the Ultracold Neutron facility at the Los Alamos Neutron Science Center, is the first to measure such a correlation coefficient using ultracold neutrons (UCN). Following improvements to the systematic uncertainties and increased statistics, we report the new result A0=0.12054(44)stat(68)systA_0 = -0.12054(44)_{\mathrm{stat}}(68)_{\mathrm{syst}} which yields λgAgV=1.2783(22)\lambda\equiv \frac{g_{A}}{g_{V}}=-1.2783(22). Combination with the previous UCNA result and accounting for correlated systematic uncertainties produces A0=0.12015(34)stat(63)systA_0=-0.12015(34)_{\mathrm{stat}}(63)_{\mathrm{syst}} and λgAgV=1.2772(20)\lambda\equiv \frac{g_{A}}{g_{V}}=-1.2772(20).Comment: 9 pages, 7 figures, updated to as-published versio

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.

    Magnesium induces neuronal apoptosis by suppressing excitability

    Get PDF
    In clinical obstetrics, magnesium sulfate (MgSO4) use is widespread, but effects on brain development are unknown. Many agents that depress neuronal excitability increase developmental neuroapoptosis. In this study, we used dissociated cultures of rodent hippocampus to examine the effects of Mg++ on excitability and survival. Mg++-induced caspase-3-associated cell loss at clinically relevant concentrations. Whole-cell patch-clamp techniques measured Mg++ effects on action potential threshold, action potential peak amplitude, spike number and changes in resting membrane potential. Mg++ depolarized action potential threshold, presumably from surface charge screening effects on voltage-gated sodium channels. Mg++ also decreased the number of action potentials in response to fixed current injection without affecting action potential peak amplitude. Surprisingly, Mg++ also depolarized neuronal resting potential in a concentration-dependent manner with a +5.2 mV shift at 10 mM. Voltage ramps suggested that Mg++ blocked a potassium conductance contributing to the resting potential. In spite of this depolarizing effect of Mg++, the net inhibitory effect of Mg++ nearly completely silenced neuronal network activity measured with multielectrode array recordings. We conclude that although Mg++ has complex effects on cellular excitability, the overall inhibitory influence of Mg++ decreases neuronal survival. Taken together with recent in vivo evidence, our results suggest that caution may be warranted in the use of Mg++ in clinical obstetrics and neonatology

    Reporting of harm in randomized controlled trials evaluating stents for percutaneous coronary intervention

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to assess the reporting of harm in randomized controlled trials evaluating stents for percutaneous coronary intervention.</p> <p>Methods</p> <p>The study design was a methodological systematic review of randomized controlled trials. The data sources were MEDLINE and the Cochrane Central Register of Controlled Trials. All reports of randomized controlled trials assessing stent treatment for coronary disease published between January 1, 2003, and September 30, 2008 were selected.</p> <p>A standardized abstraction form was used to extract data.</p> <p>Results</p> <p>132 articles were analyzed. Major cardiac adverse events (death, cardiac death, myocardial infarction or stroke) were reported as primary or secondary outcomes in 107 reports (81%). However, 19% of the articles contained no data on cardiac events. The mode of data collection of adverse events was given in 29 reports (22%) and a definition of expected adverse events was provided in 47 (36%). The length of follow-up was reported in 95 reports (72%). Assessment of adverse events by an adjudication committee was described in 46 reports (35%), and adverse events were described as being followed up for 6 months in 24% of reports (n = 32), between 7 to 12 months in 42% (n = 55) and for more than 1 year in 4% (n = 5). In 115 reports (87%), numerical data on the nature of the adverse events were reported per treatment arm. Procedural complications were described in 30 articles (23%). The causality of adverse events was reported in only 4 articles.</p> <p>Conclusion</p> <p>Several harm-related data were not adequately accounted for in articles of randomized controlled trials assessing stents for percutaneous coronary intervention.</p> <p>Trials Registration</p> <p>Trials manuscript: 5534201182098351 (T80802P)</p

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
    corecore