275 research outputs found

    Evolutionary Status of Dwarf ``Transition'' Galaxies

    Get PDF
    We present deep B, R and Halpha imaging of 3 dwarf galaxies: NGC3377A, NGC4286, and IC3475. Based on previous broadband imaging and HI studies, these mixed-morphology galaxies were proposed by Sandage & Hoffman (1991) to be, respectively, a gas-rich low surface brightness Im dwarf, a nucleated dwarf that has lost most of its gas and is in transition from Im to dS0,N, and the prototypical example of a gas-poor ``huge low surface brightness'' early-type galaxy. From the combination of our broadband and Halpha imaging with the published information on the neutral gas content of these three galaxies, we find that (1) NGC3377A is a dwarf spiral; (2) NGC3377A and NGC4286 have comparable amounts of ongoing star formation, as indicated by their Halpha emission, while IC3475 has no detected HII regions to a very low limit; (3) the global star formation rates are at least a factor of 20 below that of 30 Doradus for NGC3377A and NGC4286; (4) while the amount of star formation is comparable, the distribution of star forming regions is very different between NGC3377A and NGC4286; (5) given their current star formation rates and gas contents, both NGC3377A and NGC4286 can continue to form stars for more than a Hubble time; (6) both NGC3377A and NGC4286 have integrated total B-R colors that are redder than the integrated total B-R color for IC3475, and thus it is unlikely that either galaxy will ever evolve into an IC3475 counterpart; and (7) IC3475 is too blue to be a dE. We thus conclude that we have not identified potential precursors to galaxies such as IC3475, and unless signifcant changes occur in the star formation rates, neither NGC3377A nor NGC4286 will evolve into a dwarf elliptical or dwarf spheroidal within a Hubble time.Comment: 34 pages, 6 jpg figures, 3 postscript figures, and 4 tables, uses AASTeX, ApJ, in pres

    Patient-centric trials for therapeutic development in precision oncology

    Get PDF
    An enhanced understanding of the molecular pathology of disease gained from genomic studies is facilitating the development of treatments that target discrete molecular subclasses of tumours. Considerable associated challenges include how to advance and implement targeted drug-development strategies. Precision medicine centres on delivering the most appropriate therapy to a patient on the basis of clinical and molecular features of their disease. The development of therapeutic agents that target molecular mechanisms is driving innovation in clinical-trial strategies. Although progress has been made, modifications to existing core paradigms in oncology drug development will be required to realize fully the promise of precision medicine

    Investigation into the annotation of protocol sequencing steps in the sequence read archive

    Get PDF
    BACKGROUND: The workflow for the production of high-throughput sequencing data from nucleic acid samples is complex. There are a series of protocol steps to be followed in the preparation of samples for next-generation sequencing. The quantification of bias in a number of protocol steps, namely DNA fractionation, blunting, phosphorylation, adapter ligation and library enrichment, remains to be determined. RESULTS: We examined the experimental metadata of the public repository Sequence Read Archive (SRA) in order to ascertain the level of annotation of important sequencing steps in submissions to the database. Using SQL relational database queries (using the SRAdb SQLite database generated by the Bioconductor consortium) to search for keywords commonly occurring in key preparatory protocol steps partitioned over studies, we found that 7.10%, 5.84% and 7.57% of all records (fragmentation, ligation and enrichment, respectively), had at least one keyword corresponding to one of the three protocol steps. Only 4.06% of all records, partitioned over studies, had keywords for all three steps in the protocol (5.58% of all SRA records). CONCLUSIONS: The current level of annotation in the SRA inhibits systematic studies of bias due to these protocol steps. Downstream from this, meta-analyses and comparative studies based on these data will have a source of bias that cannot be quantified at present

    Is there an association between depressive and urinary symptoms during and after pregnancy?

    Get PDF
    Depressive symptoms and urinary symptoms are both highly prevalent in pregnancy. In the general population, an association is reported between urinary symptoms and depressive symptoms. The association of depressive and urinary symptoms has not yet been assessed in pregnancy. In this study, we assessed (1) the prevalence of depressive symptoms, over-active bladder (OAB) syndrome, urge urinary incontinence (UUI) and stress urinary incontinence (SUI) during and after pregnancy using the Center for Epidemiologic Studies Depression Scale (CES-D) and the Urogenital Distress Inventory (UDI) and (2) the association of depressive symptoms with urinary incontinence and over-active bladder syndrome during and after pregnancy, controlling for confounding socioeconomic, psychosocial, behavioural and biomedical factors in a cohort of healthy nulliparous women. Our data show a significant increase in prevalence of depressive symptoms, UUI, SUI and OAB during pregnancy and a significant reduction in prevalence of depressive symptoms, SUI and OAB after childbirth. UUI prevalence did not significantly decrease after childbirth. In univariate analysis, urinary incontinence and the OAB syndrome were significantly associated with a CES-D score indicative of a possible clinical depression at 36Β weeks gestation. However, after adjusting for possible confounding factors, only the OAB syndrome remained significantly associated (OR 4.4 [1.8–10.5]). No association was found between depressive and urinary symptoms at 1Β year post-partum. Only OAB was independently associated with depressive symptoms during pregnancy. Possible explanations for this association are discussed

    Foundations of Black Hole Accretion Disk Theory

    Get PDF
    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at http://www.livingreviews.org/lrr-2013-

    Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field

    Get PDF
    Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton–exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72Β±0.05

    Fall Classification by Machine Learning Using Mobile Phones

    Get PDF
    Fall prevention is a critical component of health care; falls are a common source of injury in the elderly and are associated with significant levels of mortality and morbidity. Automatically detecting falls can allow rapid response to potential emergencies; in addition, knowing the cause or manner of a fall can be beneficial for prevention studies or a more tailored emergency response. The purpose of this study is to demonstrate techniques to not only reliably detect a fall but also to automatically classify the type. We asked 15 subjects to simulate four different types of falls–left and right lateral, forward trips, and backward slips–while wearing mobile phones and previously validated, dedicated accelerometers. Nine subjects also wore the devices for ten days, to provide data for comparison with the simulated falls. We applied five machine learning classifiers to a large time-series feature set to detect falls. Support vector machines and regularized logistic regression were able to identify a fall with 98% accuracy and classify the type of fall with 99% accuracy. This work demonstrates how current machine learning approaches can simplify data collection for prevention in fall-related research as well as improve rapid response to potential injuries due to falls

    Efficient and Directive Generation of Two Distinct Endoderm Lineages from Human ESCs and iPSCs by Differentiation Stage-Specific SOX17 Transduction

    Get PDF
    The establishment of methods for directive differentiation from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) is important for regenerative medicine. Although Sry-related HMG box 17 (SOX17) overexpression in ESCs leads to differentiation of either extraembryonic or definitive endoderm cells, respectively, the mechanism of these distinct results remains unknown. Therefore, we utilized a transient adenovirus vector-mediated overexpression system to mimic the SOX17 expression pattern of embryogenesis. The number of alpha-fetoprotein-positive extraembryonic endoderm (ExEn) cells was increased by transient SOX17 transduction in human ESC- and iPSC-derived primitive endoderm cells. In contrast, the number of hematopoietically expressed homeobox (HEX)-positive definitive endoderm (DE) cells, which correspond to the anterior DE in vivo, was increased by transient adenovirus vector-mediated SOX17 expression in human ESC- and iPSC-derived mesendoderm cells. Moreover, hepatocyte-like cells were efficiently generated by sequential transduction of SOX17 and HEX. Our findings show that a stage-specific transduction of SOX17 in the primitive endoderm or mesendoderm promotes directive ExEn or DE differentiation by SOX17 transduction, respectively

    The Potential of N-Rich Plasma-Polymerized Ethylene (PPE:N) Films for Regulating the Phenotype of the Nucleus Pulposus

    Get PDF
    We recently developed a nitrogen-rich plasma-polymerized biomaterial, designated β€œPPE:N” (N-doped plasma-polymerized ethylene) that is capable of suppressing cellular hypertrophy while promoting type I collagen and aggrecan expression in mesenchymal stem cells from osteoarthritis patients. We then hypothesized that these surfaces would form an ideal substrate on which the nucleus pulposus (NP) phenotype would be maintained. Recent evidence using microarrays showed that in young rats, the relative mRNA levels of glypican-3 (GPC3) and pleiotrophin binding factor (PTN) were significantly higher in nucleus pulposus (NP) compared to annulus fibrosus (AF) and articular cartilage. Furthermore, vimentin (VIM) mRNA levels were higher in NP versus articular cartilage. In contrast, the levels of expression of cartilage oligomeric matrix protein (COMP) and matrix gla protein precursor (MGP) were lower in NP compared to articular cartilage. The objective of this study was to compare the expression profiles of these genes in NP cells from fetal bovine lumbar discs when cultured on either commercial polystyrene (PS) tissue culture dishes or on PPE:N with time. We found that the expression of these genes varies with the concentration of N ([N]). More specifically, the expression of several genes of NP was sensitive to [N], with a decrease of GPC3, VIM, PTN, and MGP in function of decreasing [N]. The expression of aggrecan, collagen type I, and collagen type II was also studied: no significant differences were observed in the cells on different surfaces with different culture time. The results support the concept that PPE:N may be a suitable scaffold for the culture of NP cells. Further studies are however necessary to better understand their effects on cellular phenotypes
    • …
    corecore