66 research outputs found

    Superorganisms of the protist kingdom : a new level of biological organization

    Get PDF
    The concept of superorganism has a mixed reputation in biology-for some it is a convenient way of discussing supra-organismal levels of organization, and for others, little more than a poetic metaphor. Here, I show that a considerable step forward in the understanding of superorganisms results from a thorough review of the supra-organismal levels of organization now known to exist among the “unicellular” protists. Limiting the discussion to protists has enormous advantages: their bodies are very well studied and relatively simple (as compared to humans or termites, two standard examples in most discussions about superorganisms), and they exhibit an enormous diversity of anatomies and lifestyles. This allows for unprecedented resolution in describing forms of supra-organismal organization. Here, four criteria are used to differentiate loose, incidental associations of hosts with their microbiota from “actual” superorganisms: (1) obligatory character, (2) specific spatial localization of microbiota, (3) presence of attachment structures and (4) signs of co-evolution in phylogenetic analyses. Three groups-that have never before been described in the philosophical literature-merit special attention: Symbiontida (also called Postgaardea), Oxymonadida and Parabasalia. Specifically, it is argued that in certain cases-for Bihospites bacati and Calkinsia aureus (symbiontids), Streblomastix strix (an oxymonad), Joenia annectens and Mixotricha paradoxa (parabasalids) and Kentrophoros (a ciliate)-it is fully appropriate to describe the whole protist-microbiota assocation as a single organism (“superorganism”) and its elements as “tissues” or, arguably, even “organs”. To account for this level of biological complexity, I propose the term “structured superorganism”

    A radioimmunoassay for quantifying carbonic anhydrase isozymes in crude lysates

    Full text link
    A radioimmunoassay was developed for quantifying each of the two genetically distinct forms of primate carbonic anhydrase, carbonic anhydrases I and II, in unpurified lysates. Under the given experimental conditions, the assay is capable of detecting a minimum of 0.025 ÎŒg of carbonic anhydrase I and 0.005 ÎŒg of carbonic anhydrase II. There is approximately 98% reproducibility upon repeated assays of a given hemolysate.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44165/1/10528_2004_Article_BF00485779.pd

    Autonomous replication and addition of telomerelike sequences to DNA microinjected into Paramecium tetraurelia macronuclei.

    Get PDF
    Paramecium tetraurelia can be transformed by microinjection of cloned serotype A gene sequences into the macronucleus. Transformants are detected by their ability to express serotype A surface antigen from the injected templates. After injection, the DNA is converted from a supercoiled form to a linear form by cleavage at nonrandom sites. The linear form appears to replicate autonomously as a unit-length molecule and is present in transformants at high copy number. The injected DNA is further processed by the addition of paramecium-type telomeric sequences to the termini of the linear DNA. To examine the fate of injected linear DNA molecules, plasmid pSA14SB DNA containing the A gene was cleaved into two linear pieces, a 14-kilobase (kb) piece containing the A gene and flanking sequences and a 2.2-kb piece consisting of the procaryotic vector. In transformants expressing the A gene, we observed that two linear DNA species were present which correspond to the two species injected. Both species had Paramecium telomerelike sequences added to their termini. For the 2.2-kb DNA, we show that the site of addition of the telomerelike sequences is directly at one terminus and within one nucleotide of the other terminus. These results indicate that injected procaryotic DNA is capable of autonomous replication in Paramecium macronuclei and that telomeric addition in the macronucleus does not require specific recognition sequences

    Transformation of Paramecium by microinjection of a cloned serotype gene.

    Get PDF
    Paramecia of a given serotype express only one of several possible surface proteins called immobilization antigens (i-antigens). A 16-kilobase plasmid containing the gene for immobilization antigen A from Paramecium tetraurelia, stock 51, was injected into the macronucleus of deletion mutant d12, which lacks that gene. Approximately 40% of the injected cells acquired the ability to express serotype A at 34 degrees C. Expression appeared to be regulated normally. The transformed cells, like wild type, could be switched to serotype B by antiserum treatment and culture at 19 degrees C; on transfer to 34 degrees C, they switched back to serotype A expression. Many of the lines retained the ability to express serotype A until autogamy, when the old macronucleus is replaced by a new one derived from the micronucleus. DNA from transformants contained the injected plasmid sequences, which were replicated within the paramecia. No evidence for integration was obtained. The majority of replicated plasmid DNA comigrated with a linearized form of the input plasmid. Nonetheless, the pattern of restriction fragments generated by transformant DNA and that generated by input plasmid DNA are identical and consistent with a circular rather than a linear map. These conflicting observations can be reconciled by assuming that a mixture of different linear fragments is present in the transformants, each derived from the circular plasmid by breakage at a different point. Copy-number determinations suggest the presence of 45,000-135,000 copies of the injected plasmid per transformed cell. These results suggest that the injected DNA contains information sufficient for both controlled expression and autonomous replication in Paramecium
    • 

    corecore