53 research outputs found

    Parity-related molecular signatures and breast cancer subtypes by estrogen receptor status

    Get PDF
    INTRODUCTION: Relationships of parity with breast cancer risk are complex. Parity is associated with decreased risk of postmenopausal hormone receptor–positive breast tumors, but may increase risk for basal-like breast cancers and early-onset tumors. Characterizing parity-related gene expression patterns in normal breast and breast tumor tissues may improve understanding of the biological mechanisms underlying this complex pattern of risk. METHODS: We developed a parity signature by analyzing microRNA microarray data from 130 reduction mammoplasty (RM) patients (54 nulliparous and 76 parous). This parity signature, together with published parity signatures, was evaluated in gene expression data from 150 paired tumors and adjacent benign breast tissues from the Polish Breast Cancer Study, both overall and by tumor estrogen receptor (ER) status. RESULTS: We identified 251 genes significantly upregulated by parity status in RM patients (parous versus nulliparous; false discovery rate = 0.008), including genes in immune, inflammation and wound response pathways. This parity signature was significantly enriched in normal and tumor tissues of parous breast cancer patients, specifically in ER-positive tumors. CONCLUSIONS: Our data corroborate epidemiologic data, suggesting that the etiology and pathogenesis of breast cancers vary by ER status, which may have implications for developing prevention strategies for these tumors

    Digital NFATc2 Activation per Cell Transforms Graded T Cell Receptor Activation into an All-or-None IL-2 Expression

    Get PDF
    The expression of interleukin-2 (IL-2) is a key event in T helper (Th) lymphocyte activation, controlling both, the expansion and differentiation of effector Th cells as well as the activation of regulatory T cells. We demonstrate that the strength of TCR stimulation is translated into the frequency of memory Th cells expressing IL-2 but not into the amount of IL-2 per cell. This molecular switch decision for IL-2 expression per cell is located downstream of the cytosolic Ca2+ level. Here we show that in a single activated Th cell, NFATc2 activation is digital but NF-ÎşB activation is graded after graded T cell receptor (TCR) signaling. Subsequently, NFATc2 translocates into the nucleus in an all-or-none fashion per cell, transforming the strength of TCR-stimulation into the number of nuclei positive for NFATc2 and IL-2 transcription. Thus, the described NFATc2 switch regulates the number of Th cells actively participating in an immune response

    Bistability versus Bimodal Distributions in Gene Regulatory Processes from Population Balance

    Get PDF
    In recent times, stochastic treatments of gene regulatory processes have appeared in the literature in which a cell exposed to a signaling molecule in its environment triggers the synthesis of a specific protein through a network of intracellular reactions. The stochastic nature of this process leads to a distribution of protein levels in a population of cells as determined by a Fokker-Planck equation. Often instability occurs as a consequence of two (stable) steady state protein levels, one at the low end representing the “off” state, and the other at the high end representing the “on” state for a given concentration of the signaling molecule within a suitable range. A consequence of such bistability has been the appearance of bimodal distributions indicating two different populations, one in the “off” state and the other in the “on” state. The bimodal distribution can come about from stochastic analysis of a single cell. However, the concerted action of the population altering the extracellular concentration in the environment of individual cells and hence their behavior can only be accomplished by an appropriate population balance model which accounts for the reciprocal effects of interaction between the population and its environment. In this study, we show how to formulate a population balance model in which stochastic gene expression in individual cells is incorporated. Interestingly, the simulation of the model shows that bistability is neither sufficient nor necessary for bimodal distributions in a population. The original notion of linking bistability with bimodal distribution from single cell stochastic model is therefore only a special consequence of a population balance model
    • …
    corecore