51 research outputs found

    Mammary Paget's disease occurring after mastectomy

    Get PDF
    BACKGROUND: Mammary Paget's disease and extramammary Paget's disease are neoplastic conditions, in which there is intraepithelial (usually intraepidermal) infiltration by neoplastic cells showing glandular differentiation. Mammary Paget's disease occurs exclusively on the nipple/areola complex from where it may spread to the surrounding skin. CASE PRESENTATION: We here describe a case of Paget's disease occurring on the thoracic wall site of a previous simple mastectomy, and also briefly summarise the most important aspects leading to a diagnosis of mammary Paget's disease. CONCLUSION: To the best of our knowledge, this is the first reported case of mammary Paget's disease occurring after mastectomy. The absence of the nipple/areola complex obviously raised some questions concerning whether it was mammary or extra-mammary Paget's disease, and how it could occur in the absence of the nipple/areola complex

    Anti-miR-135b in colon cancer treatment: Results from a preclinical study.

    Get PDF
    Background: MicroRNAs (miRs) are small non coding RNAs involved in cell homeostasis. miRs are deregulated in colorectal cancer (CRC). Our study aimed at identifying miRs with a driver role in carcinogenesis altered by similar mechanisms in both human and mouse CRC. Goal of the study was to use CRC mouse models for the pre-clinical development of anti-miRs as therapeutic drugs. Methods: Azoximetane (AOM)/Dextran-Sulfate (DSS) treated mice or CDX2Cre-APC f/wt mice were used to study inflammation-associated and sporadic APC-related CRC. Human Inflammatory Bowel Disease associated (n=15), and sporadic (n=62) CRC with their matched normal tissues were collected according to Good Clinical Practice recommendation and subjected to RNA extraction using Trizol. miR and gene expression profiling was assessed by nCounter technology (Nanostring Seattle). Anti-miR-135b and scrambled probes for in vivo studies were synthesized by Girindus. Results: miRs profiling from AOM/DSS and CDX2Cre-APC f/wt CRC revealed that miR-135b is one of the most up-regulated miRs in both models. In humans miR-135b over-expression was found in both IBD and sporadic CRC and was associated with reduced Progression Free Survival and Overall Survival in CRC patients. Molecular studies in Mouse Embryo Fibroblast and human CRC cell lines highlighted the role of two major pathways in the upstream activation of miR-135b: APC-β-Catenin and SRC-PI3K. MiR-135b up-regulation resulted in reduced apoptosis and increased cell growth due to the down-regulation of TGFRB2, DAPK1, APC and FIH. Silencing of miR-135b in vivo reduced tumor multiplicity and tumor load in the AOM/DSS CRC model. Mice treated with anti-miR-135b showed well differentiated tumors and acinar pattern while tumors in the control groups showed low differentiation and adenomatous pattern. Conclusions: Our data suggest that miR-135b is a key molecule whose activation is downstream of oncogenes and oncosuppressor genes frequently altered in CRC. Our study defines specific pathways that converge on the activation of the same microRNA. The “in vivo” silencing of miR-135 shows preclinical efficacy with low toxicity and represents the first in vivo study for the use of anti-miRs in CRC treatmen

    ADP-ribosylation of arginine

    Get PDF
    Arginine adenosine-5′-diphosphoribosylation (ADP-ribosylation) is an enzyme-catalyzed, potentially reversible posttranslational modification, in which the ADP-ribose moiety is transferred from NAD+ to the guanidino moiety of arginine. At 540 Da, ADP-ribose has the size of approximately five amino acid residues. In contrast to arginine, which, at neutral pH, is positively charged, ADP-ribose carries two negatively charged phosphate moieties. Arginine ADP-ribosylation, thus, causes a notable change in size and chemical property at the ADP-ribosylation site of the target protein. Often, this causes steric interference of the interaction of the target protein with binding partners, e.g. toxin-catalyzed ADP-ribosylation of actin at R177 sterically blocks actin polymerization. In case of the nucleotide-gated P2X7 ion channel, ADP-ribosylation at R125 in the vicinity of the ligand-binding site causes channel gating. Arginine-specific ADP-ribosyltransferases (ARTs) carry a characteristic R-S-EXE motif that distinguishes these enzymes from structurally related enzymes which catalyze ADP-ribosylation of other amino acid side chains, DNA, or small molecules. Arginine-specific ADP-ribosylation can be inhibited by small molecule arginine analogues such as agmatine or meta-iodobenzylguanidine (MIBG), which themselves can serve as targets for arginine-specific ARTs. ADP-ribosylarginine specific hydrolases (ARHs) can restore target protein function by hydrolytic removal of the entire ADP-ribose moiety. In some cases, ADP-ribosylarginine is processed into secondary posttranslational modifications, e.g. phosphoribosylarginine or ornithine. This review summarizes current knowledge on arginine-specific ADP-ribosylation, focussing on the methods available for its detection, its biological consequences, and the enzymes responsible for this modification and its reversal, and discusses future perspectives for research in this field

    Study of TLR3, TLR4 and TLR9 in breast carcinomas and their association with metastasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toll-like receptors (TLRs) have garnered an extraordinary amount of interest in cancer research due to their role in tumor progression. By activating the production of several biological factors, TLRs induce type I interferons and other cytokines, which drive an inflammatory response and activate the adaptive immune system. The aim of this study was to investigate the expression and clinical relevance of TLR3, 4 and 9 in breast cancer.</p> <p>Methods</p> <p>The expression levels of TLR3, TLR4 and TLR9 were analyzed on tumors from 74 patients with breast cancer. The analysis was performed by immunohistochemistry.</p> <p>Results</p> <p>Samples of carcinomas with recurrence exhibited a significant increase in the mRNA levels of TLR3, TLR4 and TLR9. Tumors showed high expression of TLRs expression levels by cancer cells, especially TLR4 and 9. Nevertheless, a significant percentage of tumors also showed TLR4 expression by mononuclear inflammatory cells (21.6%) and TLR9 expression by fibroblast-like cells (57.5%). Tumors with high TLR3 expression by tumor cell or with high TLR4 expression by mononuclear inflammatory cells were significantly associated with higher probability of metastasis. However, tumours with high TLR9 expression by fibroblast-like cells were associated with low probability of metastasis.</p> <p>Conclusions</p> <p>The expression levels of TLR3, TLR4 and TLR9 have clinical interest as indicators of tumor aggressiveness in breast cancer. TLRs may represent therapeutic targets in breast cancer.</p

    Feasibility studies for the measurement of time-like proton electromagnetic form factors from p¯ p→ μ+μ- at P ¯ ANDA at FAIR

    Get PDF
    This paper reports on Monte Carlo simulation results for future measurements of the moduli of time-like proton electromagnetic form factors, | GE| and | GM| , using the p¯ p→ μ+μ- reaction at P ¯ ANDA (FAIR). The electromagnetic form factors are fundamental quantities parameterizing the electric and magnetic structure of hadrons. This work estimates the statistical and total accuracy with which the form factors can be measured at P ¯ ANDA , using an analysis of simulated data within the PandaRoot software framework. The most crucial background channel is p¯ p→ π+π-, due to the very similar behavior of muons and pions in the detector. The suppression factors are evaluated for this and all other relevant background channels at different values of antiproton beam momentum. The signal/background separation is based on a multivariate analysis, using the Boosted Decision Trees method. An expected background subtraction is included in this study, based on realistic angular distributions of the background contribution. Systematic uncertainties are considered and the relative total uncertainties of the form factor measurements are presented

    Study of excited baryons with the PANDA detector

    Get PDF

    Anti-miR-135b in colon cancer treatment: results from a preclinical study

    No full text
    Background: MicroRNAs (miRs) are small non coding RNAs involved in cell homeostasis. miRs are deregulated in colorectal cancer (CRC). Our study aimed at identifying miRs with a driver role in carcinogenesis altered by similar mechanisms in both human and mouse CRC. Goal of the study was to use CRC mouse models for the pre-clinical development of anti-miRs as therapeutic drugs. Methods: Azoximetane (AOM)/Dextran-Sulfate (DSS) treated mice or CDX2-CRE/APC-/- mice were used to study inflammation-associated and sporadic APC-related CRC. Human Inflammatory Bowel Disease associated (n=30), and sporadic (n=90) CRC with their matched normal tissues were collected according to Good Clinical Practice recommendation and subjected to RNA extraction using Trizol. miR and gene expression profiling was assessed by nCounter technology (Nanostring Seattle). Anti-miR-135b and scrambled probes for in vivo studies were synthesized by Girindus. Results: miRs profiling from AOM/DSS and CDX2-CRE/APC-/- CRC. revealed that miR-135b is one of the most up-regulated miRs in both models. In humans miR-135b over-expression was found in both IBD and sporadic CRC and was associated with reduced Progression Free Survival and Overall Survival in CRC patients. Molecular studies in Mouse Embryo Fibroblast and human CRC cell lines highlighted the role of two major pathways in the upstream activation of miR-135b: APC-β-Catenin and SRC-PI3K. MiR-135b up-regulation resulted in reduced apoptosis and increased invasion and metastasis due to the down-regulation of TGFRB2, DAPK1, APC and HIF1AN. Silencing of miR-135b in vivo reduced tumor multiplicity and tumor load in the AOM/DSS CRC model. Mice treated with anti-miR-135b showed well differentiated tumors and microacinar pattern while tumors in the control groups showed low differentiation and adenomatous pattern. Conclusions: Our data suggest that miR-135b is a key molecule whose activation is downstream of oncogenes and oncosuppressor genes frequently altered in CRC. Our study defines specific pathways that converge on the activation of the same microrna. The "in vivo" silencing of miR-135 shows preclinical efficacy with low toxicity and represents the first in vivo study for the use of antimiRs in CRC treatment
    corecore