223 research outputs found

    Overexpression of cathepsin K in mice decreases collagen deposition and lung resistance in response to bleomycin-induced pulmonary fibrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung fibrosis is a devastating pulmonary disorder characterized by alveolar epithelial injury, extracellular matrix deposition and scar tissue formation. Due to its potent collagenolytic activity, cathepsin K, a lysosomal cysteine protease is an interesting target molecule with therapeutic potential to attenuate bleomycin-induced pulmonary fibrosis in mice. We here tested the hypothesis that over-expression of cathepsin K in the lungs of mice is protective in bleomycin-induced pulmonary fibrosis.</p> <p>Methods</p> <p>Wild-type and cathepsin K overexpressing (cathepsin K transgenic; cath K tg) mice were challenged intratracheally with bleomycin and sacrificed at 1, 2, 3 and 4 weeks post-treatment followed by determination of lung fibrosis by estimating lung collagen content, lung histopathology, leukocytic infiltrates and lung function. In addition, changes in cathepsin K protein levels in the lung were determined by immunohistochemistry, real time RT-PCR and western blotting.</p> <p>Results</p> <p>Cathepsin K protein levels were strongly increased in alveolar macrophages and lung parenchymal tissue of mock-treated cathepsin K transgenic (cath K tg) mice relative to wild-type mice and further increased particularly in cath K tg but also wild-type mice in response to bleomycin. Moreover, cath K tg mice responded with a lower collagen deposition in their lungs, which was accompanied by a significantly lower lung resistance (R<sub>L</sub>) compared to bleomycin-treated wild-type mice. In addition, cath K tg mice responded with a lower degree of lung fibrosis than wild-type mice, a process that was found to be independent of inflammatory leukocyte mobilization in response to bleomycin challenge.</p> <p>Conclusion</p> <p>Over-expression of cathepsin K reduced lung collagen deposition and improved lung function parameters in the lungs of transgenic mice, thereby providing at least partial protection against bleomycin-induced lung fibrosis.</p

    Toward a comprehensive language for biological systems

    Get PDF
    Rule-based modeling has become a powerful approach for modeling intracellular networks, which are characterized by rich molecular diversity. Truly comprehensive models of cell behavior, however, must address spatial complexity at both the intracellular level and at the level of interacting populations of cells, and will require richer modeling languages and tools. A recent paper in BMC Systems Biology represents a signifcant step toward the development of a unified modeling language and software platform for the development of multi-level, multiscale biological models

    Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema

    Get PDF
    Global pollinator declines have been attributed to habitat destruction, pesticide use, and climate change or some combination of these factors, and managed honey bees, Apis mellifera, are part of worldwide pollinator declines. Here we exposed honey bee colonies during three brood generations to sub-lethal doses of a widely used pesticide, imidacloprid, and then subsequently challenged newly emerged bees with the gut parasite, Nosema spp. The pesticide dosages used were below levels demonstrated to cause effects on longevity or foraging in adult honey bees. Nosema infections increased significantly in the bees from pesticide-treated hives when compared to bees from control hives demonstrating an indirect effect of pesticides on pathogen growth in honey bees. We clearly demonstrate an increase in pathogen growth within individual bees reared in colonies exposed to one of the most widely used pesticides worldwide, imidacloprid, at below levels considered harmful to bees. The finding that individual bees with undetectable levels of the target pesticide, after being reared in a sub-lethal pesticide environment within the colony, had higher Nosema is significant. Interactions between pesticides and pathogens could be a major contributor to increased mortality of honey bee colonies, including colony collapse disorder, and other pollinator declines worldwide

    Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Development of a standardized platform for the rapid expansion of tumor-infiltrating lymphocytes (TILs) with anti-tumor function from patients with limited TIL numbers or tumor tissues challenges their clinical application.</p> <p>Methods</p> <p>To facilitate adoptive immunotherapy, we applied genetically-engineered K562 cell-based artificial antigen presenting cells (aAPCs) for the direct and rapid expansion of TILs isolated from primary cancer specimens.</p> <p>Results</p> <p>TILs outgrown in IL-2 undergo rapid, CD28-independent expansion in response to aAPC stimulation that requires provision of exogenous IL-2 cytokine support. aAPCs induce numerical expansion of TILs that is statistically similar to an established rapid expansion method at a 100-fold lower feeder cell to TIL ratio, and greater than those achievable using anti-CD3/CD28 activation beads or extended IL-2 culture. aAPC-expanded TILs undergo numerical expansion of tumor antigen-specific cells, remain amenable to secondary aAPC-based expansion, and have low CD4/CD8 ratios and FOXP3+ CD4+ cell frequencies. TILs can also be expanded directly from fresh enzyme-digested tumor specimens when pulsed with aAPCs. These "young" TILs are tumor-reactive, positively skewed in CD8+ lymphocyte composition, CD28 and CD27 expression, and contain fewer FOXP3+ T cells compared to parallel IL-2 cultures.</p> <p>Conclusion</p> <p>Genetically-enhanced aAPCs represent a standardized, "off-the-shelf" platform for the direct ex vivo expansion of TILs of suitable number, phenotype and function for use in adoptive immunotherapy.</p

    Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems

    Get PDF
    Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility. © 2014 Hogg et al

    The role of pneumolysin in mediating lung damage in a lethal pneumococcal pneumonia murine model

    Get PDF
    BACKGROUND: Intranasal inoculation of Streptococcus pneumoniae D39 serotype 2 causes fatal pneumonia in mice. The cytotoxic and inflammatory properties of pneumolysin (PLY) have been implicated in the pathogenesis of pneumococcal pneumonia. METHODS: To examine the role of PLY in this experimental model we performed ELISA assays for PLY quantification. The distribution patterns of PLY and apoptosis were established by immunohistochemical detection of PLY, caspase-9 activity and TUNEL assay on tissue sections from mice lungs at various times, and the results were quantified with image analysis. Inflammatory and apoptotic cells were also quantified on lung tissue sections from antibody treated mice. RESULTS: In bronchoalveolar lavages (BAL), total PLY was found at sublytic concentrations which were located in alveolar macrophages and leukocytes. The bronchoalveolar epithelium was PLY-positive, while the vascular endothelium was not PLY reactive. The pattern and extension of cellular apoptosis was similar. Anti-PLY antibody treatment decreased the lung damage and the number of apoptotic and inflammatory cells in lung tissues. CONCLUSION: The data strongly suggest that in vivo lung injury could be due to the pro-apoptotic and pro-inflammatory activity of PLY, rather than its cytotoxic activity. PLY at sublytic concentrations induces lethal inflammation in lung tissues and is involved in host cell apoptosis, whose effects are important to pathogen survival
    corecore