510 research outputs found

    Measurement of inclusive and differential cross sections for single top quark production in association with a W boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    Measurements of the inclusive and normalised differential cross sections are presented for the production of single top quarks in association with a W boson in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data used were recorded with the CMS detector at the LHC during 2016-2018, and correspond to an integrated luminosity of 138 fb1^{−1}. Events containing one electron and one muon in the final state are analysed. For the inclusive measurement, a multivariate discriminant, exploiting the kinematic properties of the events is used to separate the signal from the dominant ttˉt\bar{t} background. A cross section of 79.2 ± 0.9 (stat) 8.0+7.7^{+7.7}_{−8.0} (syst) ± 1.2 (lumi) pb is obtained, consistent with the predictions of the standard model. For the differential measurements, a fiducial region is defined according to the detector acceptance, and the requirement of exactly one jet coming from the fragmentation of a bottom quark. The resulting distributions are unfolded to particle level and agree with the predictions at next-to-leading order in perturbative quantum chromodynamics

    Search for long-lived particles decaying to a pair of muons in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    An inclusive search for long-lived exotic particles decaying to a pair of muons is presented. The search uses data collected by the CMS experiment at the CERN LHC in proton-proton collisions at s√ = 13 TeV in 2016 and 2018 and corresponding to an integrated luminosity of 97.6 fb−1. The experimental signature is a pair of oppositely charged muons originating from a common secondary vertex spatially separated from the pp interaction point by distances ranging from several hundred μm to several meters. The results are interpreted in the frameworks of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons ZD, and of a simplified model, in which long-lived particles are produced in decays of an exotic heavy neutral scalar boson. For the hidden Abelian Higgs model with m(ZD) greater than 20 GeV and less than half the mass of the Higgs boson, they provide the best limits to date on the branching fraction of the Higgs boson to dark photons for cτ(ZD) (varying with m(ZD)) between 0.03 and ≈0.5 mm, and above ≈0.5 m. Our results also yield the best constraints on long-lived particles with masses larger than 10 GeV produced in decays of an exotic scalar boson heavier than the Higgs boson and decaying to a pair of muons

    Measurement of the B0^{0}s_{s} → μ+^{+} μ^{-} decay properties and search for the B0^{0} → μ+^{+}μ^{-} decay in proton-proton collisions at √s = 13 TeV

    Get PDF

    Search for top squarks in the four-body decay mode with single lepton final states in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A search for the pair production of the lightest supersymmetric partner of the top quark, the top squark (t∼1), is presented. The search targets the four-body decay of the t∼1, which is preferred when the mass difference between the top squark and the lightest supersymmetric particle is smaller than the mass of the W boson. This decay mode consists of a bottom quark, two other fermions, and the lightest neutralino (χ∼01), which is assumed to be the lightest supersymmetric particle. The data correspond to an integrated luminosity of 138 fb−1 of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC. Events are selected using the presence of a high-momentum jet, an electron or muon with low transverse momentum, and a significant missing transverse momentum. The signal is selected based on a multivariate approach that is optimized for the difference between m(t∼1) and m(χ∼01). The contribution from leading background processes is estimated from data. No significant excess is observed above the expectation from standard model processes. The results of this search exclude top squarks at 95% confidence level for masses up to 480 and 700 GeV for m(t∼1) − m(χ∼01) = 10 and 80 GeV, respectively

    Measurement of the cross section of top quark-antiquark pair production in association with a W boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    The production of a top quark-antiquark pair in association with a W boson (ttˉW)(t\bar{t}W) is measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The analyzed data was recorded by the CMS experiment at the CERN LHC and corresponds to an integrated luminosity of 138 fb1^{−1}. Events with two or three leptons (electrons and muons) and additional jets are selected. In events with two leptons, a multiclass neural network is used to distinguish between the signal and background processes. Events with three leptons are categorized based on the number of jets and of jets originating from b quark hadronization, and the lepton charges. The inclusive (ttˉW)(t\bar{t}W) production cross section in the full phase space is measured to be 868 ± 40(stat) ± 51(syst) fb. The (ttˉW)+(t\bar{t}W)+ and (ttˉW)(t\bar{t}W)− cross sections are also measured as 553 ± 30(stat) ± 30(syst) and 343 ± 26(stat) ± 25(syst) fb, respectively, and the corresponding ratio of the two cross sections is found to be 1.61±0.15(stat)0.05+0.07^{+0.07}_{−0.05}(syst). The measured cross sections are larger than but consistent with the standard model predictions within two standard deviations, and represent the most precise measurement of these cross sections to date

    Search for top squark pair production in a final state with at least one hadronically decaying tau lepton in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF

    Search for high-mass exclusive γγ → WW and γγ → ZZ production in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF

    Performance of the local reconstruction algorithms for the CMS hadron calorimeter with Run 2 data

    Get PDF
    A description is presented of the algorithms used to reconstruct energy deposited in the CMS hadron calorimeter during Run 2 (2015–2018) of the LHC. During Run 2, the characteristic bunch-crossing spacing for proton-proton collisions was 25 ns, which resulted in overlapping signals from adjacent crossings. The energy corresponding to a particular bunch crossing of interest is estimated using the known pulse shapes of energy depositions in the calorimeter, which are measured as functions of both energy and time. A variety of algorithms were developed to mitigate the effects of adjacent bunch crossings on local energy reconstruction in the hadron calorimeter in Run 2, and their performance is compared

    Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel with pp collisions at s \sqrt{s} = 13 TeV

    Get PDF
    The measurements of the inclusive and differential fiducial cross sections of the Higgs boson decaying to a pair of photons are presented. The analysis is performed using proton-proton collisions data recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 137 fb1^{−1}. The inclusive fiducial cross section is measured to be σfidσ_{fid}=73.45.3+5.4^{+5.4}_{−5.3}(stat)2.2+2.4^{+2.4}_{−2.2}(syst) fb, in agreement with the standard model expectation of 75.4 ± 4.1 fb. The measurements are also performed in fiducial regions targeting different production modes and as function of several observables describing the diphoton system, the number of additional jets present in the event, and other kinematic observables. Two double differential measurements are performed. No significant deviations from the standard model expectations are observed

    Evidence for four-top quark production in proton-proton collisions at √s = 13 TeV

    Get PDF
    corecore