284 research outputs found

    Direct observation of negative-index microwave surface waves.

    Get PDF
    Published onlineJournal ArticleWaves propagating in a negative-index material have wave-front propagation (wavevector, k) opposite in direction to that of energy flow (Poynting vector, S). Here we present an experimental realisation at microwave frequencies of an analogous surface wave phenomenon whereby a metasurface supports a surface mode that has two possible wavevector eigenstates within a narrow band of frequencies: one that supports surface waves with positive mode index, and another that supports surface waves with negative mode index. Phase sensitive measurements of the near-field of surface waves across the metasurface show the contrasting spatial evolution of the two eigenstates, providing a unique opportunity to directly observe the negative-index phenomenon.The authors wish to acknowledge financial support from the EPSRC through the University of Exeter’s Doctoral Training Account, and also for support through the QUEST programme grant (EP/I034548/1) “The Quest for Ultimate Electromagnetics using Spatial Transformations”

    Manipulating the quasi–normal modes of radially symmetric resonators

    Get PDF
    This is the final version. Available from Optica via the DOI in this record. Data availability. All data and code created during this research are openly available from the corresponding authors, upon reasonable requestThe frequency response of a resonator is governed by the locations of its quasi-normal modes in the complex frequency plane. The real part of the quasi–normal mode determines the resonance frequency and the imaginary part determines the width of the resonance. For applications such as energy harvesting and sensing, the ability to manipulate the frequency, linewidth and multipolar nature of resonances is key. Here, we derive two methods for simultaneously controlling the resonance frequency, linewidth and multipolar nature of the resonances of radially symmetric structures. Firstly, we formulate an eigenvalue problem for a global shift in the permittivity of the structure to place a resonance at a particular complex frequency. Next, we employ quasi-normal mode perturbation theory to design radially graded structures with resonances at desired frequencies.Royal SocietyEngineering and Physical Sciences Research Council (EPSRC)Defence Science and Technology Laborator

    Inverse design in the complex plane: Manipulating quasinormal modes

    Get PDF
    This is the final version. Available from the American Physical Society via the DOI in this recordData availability: All data and code created during this research are openly available from the corresponding authors, upon reasonable request.Utilising the fact that the frequency response of a material can be decomposed into the quasi-normal modes supported by the system, we present two methods to directly manipulate the complex frequencies of quasi-normal modes in the complex plane. We first consider an `eigen-permittivity' approach that allows one to find how to shift the permittivity of the structure everywhere in order to place a single quasi-normal mode at a desired complex frequency. Secondly, we then use perturbation theory for quasi-normal modes to iteratively change the structure until a given selection of quasi-normal modes occur at desired complex frequencies.Engineering and Physical Sciences Research Council (EPSRC)Defence Science Technology Laboratory (DSTL)Royal Societ

    Designing disordered multi-functional metamaterials using the discrete dipole approximation

    Get PDF
    This is the final version. Available on open access from IOP Publishing via the DOI in this recordData availability statement: The data that support the findings of this study are available upon reasonable request from the authors.The ability to design passive structures that perform different operations on different electromagnetic fields is key to many technologies, from beam-steering to optical computing. While many techniques have been developed to optimise structures to achieve specific functionality through inverse design, designing multi-function materials remains challenging. We present a semi-analytic method, based on the discrete dipole approximation, to design multi-functional metamaterials. To demonstrate the generality of our method, we present two key examples. Firstly, we work at optical wavelengths to design a disordered 2D arrangement of silicon spheres that beams light into different directions depending on the source polarisation. Secondly, we design a 3D device that works at microwave wavelengths and sorts plane waves by their angle of incidence. In this case, the scatterers are more complicated meta-atoms, with a strong dipole resonance at microwave frequencies.Engineering and Physical Sciences Research Council (EPSRC)Defence Science Technology Laboratory (DSTL)Royal Societ

    Multi–objective optimisation of metamaterial antenna

    Get PDF
    This is the final version. Available from the Institute of Electrical and Electronics Engineers via the DOI in this record. Passive manipulation of radiation is key to many modern technologies for sensing and communication. While many techniques exist to design electromagnetic systems that perform a single desired function, the design of systems which are multi–functional remains challenging. We have developed a versatile semi–analytic framework for designing multi–functional metamaterials to shape antenna radiation. To demonstrate the versatility of this method we design two devices: one which re– shapes the radiation pattern of an emitter while also enhancing the efficiency, and one which beams radiation into different directions depending upon the polarisation of a driven element.Engineering and Physical Sciences Research Council (EPSRC)Royal SocietyDefence Science Technology Laborator

    Microwave demonstration of Purcell effect enhanced radiation efficiency

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this record. The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.We experimentally demonstrate a Purcell effect-based design technique for improved impedance matching, and thus enhanced the reflection coefficient from a small microwave emitter. Using an iterative process centred on comparing the phase of the radiated field of the emitter in air with that of the emitter in a dielectric environment, we optimise the structure of a dielectric hemisphere above a ground plane surrounding a small monopolar microwave emitter in order to maximise its radiation efficiency. The optimised system shows very strong coupling between the emitter and two omnidirectional radiation modes at 1.99 GHz and 2.84 GHz, yielding Purcell enhancement factors of 1762 and 411 times increase respectively, and near perfect radiation efficiency.Engineering and Physical Sciences Research Council (EPSRC)Leonardo Ltd U

    A Method for Determining Skeletal Lengths from DXA Images

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Skeletal ratios and bone lengths are widely used in anthropology and forensic pathology and hip axis length is a useful predictor of fracture. The aim of this study was to show that skeletal ratios, such as length of femur to height, could be accurately measured from a DXA (dual energy X-ray absorptiometry) image.</p> <p>Methods</p> <p>90 normal Caucasian females, 18–80 years old, with whole body DXA data were used as subjects. Two methods, linear pixel count (LPC) and reticule and ruler (RET) were used to measure skeletal sizes on DXA images and compared with real clinical measures from 20 subjects and 20 x-rays of the femur and tibia taken in 2003.</p> <p>Results</p> <p>Although both methods were highly correlated, the LPC inter- and intra-observer error was lower at 1.6% compared to that of RET at 2.3%. Both methods correlated positively with real clinical measures, with LPC having a marginally stronger correlation coefficient (r<sup>2 </sup>= 0.94; r<sup>2 </sup>= 0.84; average r<sup>2 </sup>= 0.89) than RET (r<sup>2 </sup>= 0.86; r<sup>2 </sup>= 0.84; average r<sup>2 </sup>= 0.85) with X-rays and real measures respectively. Also, the time taken to use LPC was half that of RET at 5 minutes per scan.</p> <p>Conclusion</p> <p>Skeletal ratios can be accurately and precisely measured from DXA total body scan images. The LPC method is easy to use and relatively rapid. This new phenotype will be useful for osteoporosis research for individuals or large-scale epidemiological or genetic studies.</p

    Revisiting Scalar and Pseudoscalar Couplings with Nucleons

    Full text link
    Certain dark matter interactions with nuclei are mediated possibly by a scalar or pseudoscalar Higgs boson. The estimation of the corresponding cross sections requires a correct evaluation of the couplings between the scalar or pseudoscalar Higgs boson and the nucleons. Progress has been made in two aspects relevant to this study in the past few years. First, recent lattice calculations show that the strange-quark sigma term σs\sigma_s and the strange-quark content in the nucleon are much smaller than what are expected previously. Second, lattice and model analyses imply sizable SU(3) breaking effects in the determination on the axial-vector coupling constant gA8g_A^8 that in turn affect the extraction of the isosinglet coupling gA0g_A^0 and the strange quark spin component Δs\Delta s from polarized deep inelastic scattering experiments. Based on these new developments, we re-evaluate the relevant nucleon matrix elements and compute the scalar and pseudoscalar couplings of the proton and neutron. We also find that the strange quark contribution in both types of couplings is smaller than previously thought.Comment: 17 pages, Sec. II is revised and the pion-nucleon sigma term extracted from the scattering data is discussed. Version to appear in JHE

    Intraoperative electrocortical stimulation of Brodman area 4: a 10-year analysis of 255 cases

    Get PDF
    BACKGROUND: Brain tumor surgery is limited by the risk of postoperative neurological deficits. Intraoperative neurophysiological examination techniques, which are based on the electrical excitability of the human brain cortex, are thus still indispensable for surgery in eloquent areas such as the primary motor cortex (Brodman Area 4). METHODS: This study analyzed the data obtained from a total of 255 cerebral interventions for lesions with direct contact to (121) or immediately adjacent to (134) Brodman Area 4 in order to optimize stimulation parameters and to search for direct correlation between intraoperative potential changes and specific surgical maneuvers when using monopolar cortex stimulation (MCS) for electrocortical mapping and continuous intraoperative neurophysiological monitoring. RESULTS: Compound muscle action potentials (CMAPs) were recorded from the thenar muscles and forearm flexors in accordance with the large representational area of the hand and forearm in Brodman Area 4. By optimizing the stimulation parameters in two steps (step 1: stimulation frequency and step 2: train sequence) MCS was successful in 91% (232/255) of the cases. Statistical analysis of the parameters latency, potential width and amplitude showed spontaneous latency prolongations and abrupt amplitude reductions as a reliable warning signal for direct involvement of the motor cortex or motor pathways. CONCLUSION: MCS must be considered a stimulation technique that enables reliable qualitative analysis of the recorded potentials, which may thus be regarded as directly predictive. Nevertheless, like other intraoperative neurophysiological examination techniques, MCS has technical, anatomical and neurophysiological limitations. A variety of surgical and non-surgical influences can be reason for false positive or false negative measurements

    Does a SLAP lesion affect shoulder muscle recruitment as measured by EMG activity during a rugby tackle?

    Get PDF
    Background: The study objective was to assess the influence of a SLAP lesion on onset of EMG activity in shoulder muscles during a front on rugby football tackle within professional rugby players. Methods: Mixed cross-sectional study evaluating between and within group differences in EMG onset times. Testing was carried out within the physiotherapy department of a university sports medicine clinic. The test group consisted of 7 players with clinically diagnosed SLAP lesions, later verified on arthroscopy. The reference group consisted of 15 uninjured and full time professional rugby players from within the same playing squad. Controlled tackles were performed against a tackle dummy. Onset of EMG activity was assessed from surface EMG of Pectorialis Major, Biceps Brachii, Latissimus Dorsi, Serratus Anterior and Infraspinatus muscles relative to time of impact. Analysis of differences in activation timing between muscles and limbs (injured versus non-injured side and non injured side versus matched reference group). Results: Serratus Anterior was activated prior to all other muscles in all (P = 0.001-0.03) subjects. In the SLAP injured shoulder Biceps was activated later than in the non-injured side. Onset times of all muscles of the noninjured shoulder in the injured player were consistently earlier compared with the reference group. Whereas, within the injured shoulder, all muscle activation timings were later than in the reference group. Conclusions: This study shows that in shoulders with a SLAP lesion there is a trend towards delay in activation time of Biceps and other muscles with the exception of an associated earlier onset of activation of Serratus anterior, possibly due to a coping strategy to protect glenohumeral stability and thoraco-scapular stability. This trend was not statistically significant in all cases
    corecore