3,843 research outputs found

    A Possible Solution to the Tritium Endpoint Problem

    Get PDF
    Scalar or right-chiral interaction currents may be expected to produce a neutrino coupled to the electron which is different from, and perhaps even orthogonal to, that coupled to the electron by the standard model weak interaction. We show that, using reasonable parameter values for such additional interactions, it is possible to generate a spectrum which, if analyzed in the manner commonly employed by experimental groups, produces a negative neutrino mass-squared.Comment: LaTeX, 7 pages, 1 Postscript figure, submitted to Phys. Lett.

    Review of Spectroscopic Data for Measurements of Stratospheric Species

    Get PDF
    Results and recommendations from a two day workshop are discussed. A review of the current status of experimental and theoretical spectroscopic data on molecules of stratospheric interest is given along with recommendations for additional research. Methods for disseminating new and existing data are also discussed

    Quark Model Calculations Of Symmetry Breaking in Parton Distributions

    Get PDF
    Using a quark model, we calculate symmetry breaking effects in the valence quark distributions of the nucleon. In particular, we examine the breaking of the quark model SU(4) symmetry by color magnetic effects, and find that color magnetism provides an explanation for deviation of the ratio dV(x)/uV(x)d_V(x)/u_V(x) from 1/21/2. Additionally, we calculate the effect of charge symmetry breaking in the valence quark distributions of the proton and neutron and find, in contrast to other authors, that the effect is too small to be seen experimentally.Comment: 6 Pages, 3 postscript figures compressed using uufile

    Neutrino masses or new interactions

    Full text link
    Recent proposals to study the mass of the "electron" neutrino at a sensitivity of 0.3 eV can be used to place limits on the right handed and scalar charged currents at a level which improves on the present experimental limits. Indeed the neglect of the possibility of such interactions can lead to the inference of an incorrect value for the mass, as we illustrate.Comment: 12 pages and 3 figures. Contributed to the XX International Symposium on Lepton and Photon Interactions at High Energies, Rome, July 2001, and to the International Europhysics Conference on High Energy Physics, Budapest, July 2001. Preprint numbers added, misprints correcte

    Neutrino clustering and the Z-burst model

    Full text link
    The possibility that the observed Ultra High Energy Cosmic Rays are generated by high energy neutrinos creating "Z-bursts" in resonant interactions with the background neutrinos has been proposed, but there are difficulties in generating enough events with reasonable incident neutrino fluxes. We point out that this difficulty is overcome if the background neutrinos have coalesced into "neutrino clouds" --- a possibility previously suggested by some of us in another context. The limitations that this mechanism for the generation of UHECRs places on the high energy neutrino flux, on the masses of the background neutrinos and the characteristics of the neutrino clouds are spelled out.Comment: 13 pages and 3 figures. Contributed to the XX International Symposium on Lepton and Photon Interactions at High Energies, Rome, July 2001, and to the International Europhysics Conference on High Energy Physics, Budapest, July 2001. Preprint numbers added, misprints correcte
    • …
    corecore