242 research outputs found
Measurement of Conductivity and Charge Storage in Insulators Related to Spacecraft Charging
Improved experimental methods are discussed for laboratory measurement of conductivity and electric field in insulating spacecraft material intended for space radiation and plasma environments. These measurement techniques investigate the following features: 1) Measurements of conductivity are up to four orders of magnitude smaller than those determined by existing standard methods. 2) Conductivity is altered as radiation accumulates and trapping states fill with electrons. 3) With intense keV electron irradiation, electrons are continually emitted for hours from the irradiated surface after the irradiation ceases. 4) Charging induced by electron irradiation is strongly modified by the electron-hole pairs that the irradiation generates in the insulator. 5) High field effects at 106 V/cm act strongly on the electron-hole pairs and on electrons in shallow traps to provide extended conductivity. 6) The capacitance of the sample can be measured in the same apparatus along with the other testing. 7) Visible light can be used to investigate conduction by electrons (or holes) emitted from shallow trapping levels. The qualitative physics of such processes in solid dielectrics has long been known, and instrumentation is developed here for measuring the effects in practical spacecraft charging applications
Distributed Exact Shortest Paths in Sublinear Time
The distributed single-source shortest paths problem is one of the most
fundamental and central problems in the message-passing distributed computing.
Classical Bellman-Ford algorithm solves it in time, where is the
number of vertices in the input graph . Peleg and Rubinovich (FOCS'99)
showed a lower bound of for this problem, where
is the hop-diameter of .
Whether or not this problem can be solved in time when is
relatively small is a major notorious open question. Despite intensive research
\cite{LP13,N14,HKN15,EN16,BKKL16} that yielded near-optimal algorithms for the
approximate variant of this problem, no progress was reported for the original
problem.
In this paper we answer this question in the affirmative. We devise an
algorithm that requires time, for , and time, for larger . This
running time is sublinear in in almost the entire range of parameters,
specifically, for . For the all-pairs shortest paths
problem, our algorithm requires time, regardless of
the value of .
We also devise the first algorithm with non-trivial complexity guarantees for
computing exact shortest paths in the multipass semi-streaming model of
computation.
From the technical viewpoint, our algorithm computes a hopset of a
skeleton graph of without first computing itself. We then conduct
a Bellman-Ford exploration in , while computing the required edges
of on the fly. As a result, our algorithm computes exactly those edges of
that it really needs, rather than computing approximately the entire
Charge Storage Measuremens of Resistivity for Dielectric Samples from the CRRES Internal Discharge Monitor
Methods For High Resistivity Measurements Related To Spacecraft Charging
A key parameter in modeling differential spacecraft charging is the resistivity of insulating materials. This parameter determines how charge will accumulate and redistribute across the spacecraft, as well as the time scale for charge transport and dissipation. ASTM constant voltage methods are shown to provide inaccurate resistivity measurements for materials with resistivities greater than ~1017 Ω-cm or with long polarization decay times such as are found in many polymers. These data have been shown to often be inappropriate for spacecraft charging applications, and have been found to underestimate charging effects by one to four orders of magnitude for many materials. The charge storage decay method is shown to be the preferred method to determine the resistivities of such highly insulating materials.
A review is presented of methods to measure the resistivity of highly insulating materials—including the electrometer-resistance method, the electrometer-constant voltage method, and the charge storage method. The different methods are found to be appropriate for different resistivity ranges and for different charging circumstances. A simple, macroscopic, physics-based model of these methods allows separation of the polarization current and dark current components from long duration measurements of resistivity over day- to month-long time scales. Model parameters are directly related to the magnitude of charge transfer and storage and the rate of charge transport. The model largely explains the observed differences in resistivity found using the different methods and provides a framework for recommendations for the appropriate test method for spacecraft materials with different resistivities and applications
MRI Findings in Patients with a History of Failed Prior Microvascular Decompression for Hemifacial Spasm: How to Image and Where to Look
ABSTRACT BACKGROUND AND PURPOSE: A minority of patients who undergo microvascular decompression for hemifacial spasm do not improve after the first operation. We sought to determine the most common locations of unaddressed neurovascular contact in patients with persistent or recurrent hemifacial spasm despite prior microvascular decompression
Ergot resistance in sorghum in relation to flowering, inoculation technique and disease development
Ergot is an important disease of sorghum (Sorghum bicolor) in parts of Africa and Asia. Studies were conducted to determine the relationship between flowering biology and ergot infection, and to develop an artificial field-screening technique to identify ergot resistance in sorghum. Spikelets resisted infection after anthesis, but each day's delay in anthesis after inoculation supported 8-3% more ergot. The screening technique consisted of three components: trimming of panicles to remove pollinated spikelets before inoculation, a single inoculation of trimmed panicles, and panicle bagging for 7-10 days. Inoculated panicles were evaluated by a qualitative visual rating method (on a 1-5 scale) and a quantitative spikelet counting method. Selected accessions from the world collection of sorghum germplasm were screened at Karama Research Station, Rwanda, for two seasons and 12 ergot-resistant lines were identified. These were also resistant at ICRISAT Centre, India
An Average-Case Analysis for Rate-Monotonic Multiprocessor Real-time Scheduling
We introduce the "First Fit Matching Periods" algorithm for static-priority multiprocessor scheduling of periodic tasks with implicit deadlines and show that it yields asymptotically optimal processor assignments if utilization values are chosen uniformly at random. More precisely we prove that the expected waste is upper bounded by O(n^(3/4) * (log n)^(3/8)). Here the waste denotes the ratio of idle times, cumulated over all processors and n gives the number of tasks. The algorithm can be implemented to run in time O(n log n) and even in the worst case, an asymptotic approximation ratio of 2 is guaranteed. Experiments yield an expected waste proportional to n^0.70, indicating that the above upper bound on the expected waste is almost tight
MTF-1-Mediated Repression of the Zinc Transporter Zip10 Is Alleviated by Zinc Restriction
The regulation of cellular zinc uptake is a key process in the overall mechanism governing mammalian zinc homeostasis and how zinc participates in cellular functions. We analyzed the zinc transporters of the Zip family in both the brain and liver of zinc-deficient animals and found a large, significant increase in Zip10 expression. Additionally, Zip10 expression decreased in response to zinc repletion. Moreover, isolated mouse hepatocytes, AML12 hepatocytes, and Neuro 2A cells also respond differentially to zinc availability in vitro. Measurement of Zip10 hnRNA and actinomycin D inhibition studies indicate that Zip10 was transcriptionally regulated by zinc deficiency. Through luciferase promoter constructs and ChIP analysis, binding of MTF-1 to a metal response element located 17 bp downstream of the transcription start site was shown to be necessary for zinc-induced repression of Zip10. Furthermore, zinc-activated MTF-1 causes down-regulation of Zip10 transcription by physically blocking Pol II movement through the gene. Lastly, ZIP10 is localized to the plasma membrane of hepatocytes and neuro 2A cells. Collectively, these results reveal a novel repressive role for MTF-1 in the regulation of the Zip10 zinc transporter expression by pausing Pol II transcription. ZIP10 may have roles in control of zinc homeostasis in specific sites particularly those of the brain and liver. Within that context ZIP10 may act as an important survival mechanism during periods of zinc inadequacy
The auditory cortex of the bat Phyllostomus discolor: Localization and organization of basic response properties
<p>Abstract</p> <p>Background</p> <p>The mammalian auditory cortex can be subdivided into various fields characterized by neurophysiological and neuroarchitectural properties and by connections with different nuclei of the thalamus. Besides the primary auditory cortex, echolocating bats have cortical fields for the processing of temporal and spectral features of the echolocation pulses. This paper reports on location, neuroarchitecture and basic functional organization of the auditory cortex of the microchiropteran bat <it>Phyllostomus discolor </it>(family: Phyllostomidae).</p> <p>Results</p> <p>The auditory cortical area of <it>P. discolor </it>is located at parieto-temporal portions of the neocortex. It covers a rostro-caudal range of about 4800 μm and a medio-lateral distance of about 7000 μm on the flattened cortical surface.</p> <p>The auditory cortices of ten adult <it>P. discolor </it>were electrophysiologically mapped in detail. Responses of 849 units (single neurons and neuronal clusters up to three neurons) to pure tone stimulation were recorded extracellularly. Cortical units were characterized and classified depending on their response properties such as best frequency, auditory threshold, first spike latency, response duration, width and shape of the frequency response area and binaural interactions.</p> <p>Based on neurophysiological and neuroanatomical criteria, the auditory cortex of <it>P. discolor </it>could be subdivided into anterior and posterior ventral fields and anterior and posterior dorsal fields. The representation of response properties within the different auditory cortical fields was analyzed in detail. The two ventral fields were distinguished by their tonotopic organization with opposing frequency gradients. The dorsal cortical fields were not tonotopically organized but contained neurons that were responsive to high frequencies only.</p> <p>Conclusion</p> <p>The auditory cortex of <it>P. discolor </it>resembles the auditory cortex of other phyllostomid bats in size and basic functional organization. The tonotopically organized posterior ventral field might represent the primary auditory cortex and the tonotopically organized anterior ventral field seems to be similar to the anterior auditory field of other mammals. As most energy of the echolocation pulse of <it>P. discolor </it>is contained in the high-frequency range, the non-tonotopically organized high-frequency dorsal region seems to be particularly important for echolocation.</p
Lessons from Rapa Nui (Easter Island, Chile) for Governance in Conditions of Environmental Uncertainty
- …