18 research outputs found

    Magnetization transfer imaging in ‘premanifest’ Huntington’s disease

    Get PDF
    To investigate whether magnetization transfer imaging (MTI) is a useful detector of diffuse brain abnormalities in ‘premanifest’ carriers of the Huntington’s disease (HD) gene mutation. Furthermore we examined the relations between MTI, clinical measures and CAG repeat length. Sixteen premanifest carriers of the HD gene without motor manifestation and 14 non-carriers underwent a clinical evaluation and a MRI scan. MTI analysis of whole brain, grey matter and white matter was performed producing magnetization transfer ratio (MTR) histograms. A lower peak height of the grey matter MTR histogram in carriers was significantly associated with more UHDRS motor abnormalities. Furthermore, a lower peak height of the whole brain, grey and white matter was strongly associated with a longer CAG repeat length. MTI measures themselves did not differ significantly between carriers and non-carriers. In premanifest HD mutation carriers, a lower MTR peak height, reflecting worse histological brain composition, was related to subtle motor abnormalities and higher CAG repeat length. Although we could not detect altered MTI characteristics in carriers of the HD gene mutation without clinical manifestations, we did provide evidence that the MTR peak height might reflect genetic and subclinical disease burden and may be of value in monitoring further disease progression and provide insight in clinical heterogeneity

    Pseudomonas aeruginosa LPS or Flagellin Are Sufficient to Activate TLR-Dependent Signaling in Murine Alveolar Macrophages and Airway Epithelial Cells

    Get PDF
    BACKGROUND:The human lung is exposed to a large number of airborne pathogens as a result of the daily inhalation of 10,000 liters of air. Innate immunity is thus essential to defend the lungs against these pathogens. This defense is mediated in part through the recognition of specific microbial ligands by Toll-like receptors (TLR) of which there are at least 10 in humans. Pseudomonas aeruginosa is the main pathogen that infects the lungs of cystic fibrosis patients. Based on whole animal experiments, using TLR knockout mice, the control of this bacterium is believed to occur by the recognition of LPS and flagellin by TLRs 2,4 and 5, respectively. METHODOLOGY/PRINCIPAL FINDINGS:In the present study, we investigated in vitro the role of these same TLR and ligands, in alveolar macrophage (AM) and epithelial cell (EC) activation. Cellular responses to P. aeruginosa was evaluated by measuring KC, TNF-alpha, IL-6 and G-CSF secretion, four different markers of the innate immune response. AM and EC from WT and TLR2, 4, 5 and MyD88 knockout mice for were stimulated with the wild-type P. aeruginosa or with a mutant devoid of flagellin production. CONCLUSIONS/SIGNIFICANCE:The results clearly demonstrate that only two ligand/receptor pairs are necessary for the induction of KC, TNF-alpha, and IL-6 synthesis by P. aeruginosa-activated cells, i.e. TLR2,4/LPS and TLR5/flagellin. Either ligand/receptor pair is sufficient to sense the bacterium and to trigger cell activation, and when both are missing lung EC and AM are unable to produce such a response as were cells from MyD88(-/-) mice
    corecore