6 research outputs found

    Photobiochemical changes in Chlorella g120 culture during trophic conversion (metabolic pathway shift) from heterotrophic to phototrophic growth regime

    No full text
    Physiological and photobiochemical changes and growth in the heterotrophic strain Chlorella vulgaris g120 were studied during trophic conversion from heterotrophic to phototrophic growth regime. After the exposure of the Chlorella g120 culture to light, it revealed a significant activity of the electron transport (450–700 μmol e− m−2 s −1 as measured by chlorophyll fluorescence) and high PSII photochemical yield Fv/Fm between 0.7 and 0.8. Fast fluorescence induction kinetics showed that PSII electron acceptors in the plastoquinone pool remained partly oxidized, indicating no downregulation of PSII electron transport. The data further revealed that high photobiochemical activity is lost in futile (protective) processes of non-photochemical quenching and respiration which indicate that surplus energy is dissipated in these processes. Pigment analysis showed low chlorophyll content − 0.35–1.15% as compared with exclusively phototrophic strain Chlorella vulgaris R-117. Nevertheless, the carotenoid content in g120 was relatively high − 0.20–0.33% of dry weight which resulted in a considerably high ratio of carotenoid/chlorophyll − 0.31–0.44. This strain probably does not possess the fully competent photosynthetic apparatus and can only partially adapt to phototrophy. We show that the heterotrophically grown g120 strain can undergo metabolic shift from heterotrophic to phototrophic growth regime. It might be an interesting strain from biotechnological point of view as a source of carotenoids, especially lutein.Czech Academy of Sciences/[CNR-16-29]/CAS/República ChecaNational Council of Research of Italy/[CNR-16-29]/Cnr-Iia/RomaEuropean Commission/[727874]/EU/ünión EuropeaMinistry of Education, Youth and Sports/[Algatech Plus LO1416]/MSMT/República ChecaUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de BiologíaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencias del Mar y Limnología (CIMAR

    Microalgal pigments: A source of natural food colors

    No full text
    Naturally sourced colorants and dyes are currently gaining demand over synthetic alternatives due to an increase in consumer awareness brought forward by health and environmental issues. Microalgae are unicellular organisms which are microscopic in size and represent major photosynthesizers with the ability to efficiently convert available solar energy to chemical energy. Due to their distinct advantages over terrestrial plants such as faster growth rates, ability to grow on non-arable land, and diversity in the production of various natural bioactive compounds (e.g., lipids, proteins, carbohydrate, and pigments), microalgae are currently gaining promise as a sustainable source for the production of natural food-grade colorants. The versatility of microalgae to produce various pigments (e.g., chlorophylls, carotenoids, xanthophylls, and phycobiliproteins) that can be commercially exploited as a source of natural colorant is there to be explored. Various growth factors such as temperature, pH, salinity, and light in terms of both quality and quantity have been shown to significantly impact pigment production. In this chapter, we comprehensively review the characteristics of microalgal pigments and factors that affect pigment production in microalgae while evaluating the overall feasibility of exploiting them as a natural source of food colorants
    corecore