681 research outputs found

    Dissertation on uterine hemorrhage after delivery

    Get PDF

    Small Launch Vehicle Concept Development for Affordable Multi-Stage Inline Configurations

    Get PDF
    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a study of two configurations of a three-stage, inline, liquid propellant small launch vehicle concept developed on the premise of maximizing affordability by targeting a specific payload capability range based on current and future industry demand. The initial configuration, NESC-1, employed liquid oxygen as the oxidizer and rocket propellant grade kerosene as the fuel in all three stages. The second and more heavily studied configuration, NESC-4, employed liquid oxygen and rocket propellant grade kerosene on the first and second stages and liquid oxygen and liquid methane fuel on the third stage. On both vehicles, sensitivity studies were first conducted on specific impulse and stage propellant mass fraction in order to baseline gear ratios and drive the focus of concept development. Subsequent sensitivity and trade studies on the NESC-4 concept investigated potential impacts to affordability due to changes in gross liftoff mass and/or vehicle complexity. Results are discussed at a high level to understand the impact severity of certain sensitivities and how those trade studies conducted can either affect cost, performance, or both

    Small Launch Vehicle Design Approaches: Clustered Cores Compared with Multi-Stage Inline Concepts

    Get PDF
    In an effort to better define small launch vehicle design options two approaches were investigated from the small launch vehicle trade space. The primary focus was to evaluate a clustered common core design against a purpose built inline vehicle. Both designs focused on liquid oxygen (LOX) and rocket propellant grade kerosene (RP-1) stages with the terminal stage later evaluated as a LOX/methane (CH4) stage. A series of performance optimization runs were done in order to minimize gross liftoff weight (GLOW) including alternative thrust levels, delivery altitude for payload, vehicle length to diameter ratio, alternative engine feed systems, re-evaluation of mass growth allowances, passive versus active guidance systems, and rail and tower launch methods. Additionally manufacturability, cost, and operations also play a large role in the benefits and detriments for each design. Presented here is the Advanced Concepts Office's Earth to Orbit Launch Team methodology and high level discussion of the performance trades and trends of both small launch vehicle solutions along with design philosophies that shaped both concepts. Without putting forth a decree stating one approach is better than the other; this discussion is meant to educate the community at large and let the reader determine which architecture is truly the most economical; since each path has such a unique set of limitations and potential payoffs

    NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    Get PDF
    The Earth to Orbit (ETO) Team of the Advanced Concepts Office (ACO) at NASA Marshal Space Flight Center (MSFC) is considered the preeminent group to go to for prephase A and phase A concept definition. The ACO team has been at the forefront of a multitude of launch vehicle studies determining the future direction of the Agency as a whole due, in part, to their rapid turnaround time in analyzing concepts and their ability to cover broad trade spaces of vehicles in that limited timeframe. Each completed vehicle concept includes a full mass breakdown of each vehicle to tertiary subsystem components, along with a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. Additionally, a structural analysis of the vehicle based on material properties and geometries is performed as well as an analysis to determine the flight loads based on the trajectory outputs. As mentioned, the ACO Earth to Orbit Team prides themselves on their rapid turnaround time and often need to fulfill customer requests within limited schedule or little advanced notice. Due to working in this fast paced environment, the ETO team has developed some finely honed skills and methods to maximize the delivery capability to meet their customer needs. This paper will describe the interfaces between the 3 primary disciplines used in the design process; weights and sizing, trajectory, and structural analysis, as well as the approach each discipline employs to streamline their particular piece of the design process

    HE 0557-4840 - Ultra-Metal-Poor and Carbon-Rich

    Full text link
    We report the discovery and high-resolution, high S/N, spectroscopic analysis of the ultra-metal-poor red giant HE 0557-4840, which is the third most heavy-element deficient star currently known. Its atmospheric parameters are T_eff = 4900 K, log g = 2.2, and [Fe/H]= -4.75. This brings the number of stars with [Fe/H] < -4.0 to three, and the discovery of HE 0557-4840 suggests that the metallicity distribution function of the Galactic halo does not have a "gap" between [Fe/H] = -4.0, where several stars are known, and the two most metal-poor stars, at [Fe/H] ~ -5.3. HE 0557-4840 is carbon rich - [C/Fe] = +1.6 - a property shared by all three objects with [Fe/H] < -4.0, suggesting that the well-known increase of carbon relative to iron with decreasing [Fe/H] reaches its logical conclusion - ubiquitous carbon richness - at lowest abundance. We also present abundances (nine) and limits (nine) for a further 18 elements. For species having well-measured abundances or strong upper limits, HE 0557-4840 is "normal" in comparison with the bulk of the stellar population at [Fe/H] ~ -4.0 - with the possible exception of Co. We discuss the implications of these results for chemical enrichment at the earliest times, in the context of single ("mixing and fallback") and two-component enrichment models. While neither offers a clear solution, the latter appears closer to the mark. Further data are required to determine the oxygen abundance and improve that of Co, and hence more strongly constrain the origin of this object.Comment: Submitted to Astrophysical Journal. 52 pages (41 text, 11 figures

    Automated array-CGH optimized for archival formalin-fixed, paraffin-embedded tumor material

    Get PDF
    BACKGROUND: Array Comparative Genomic Hybridization (aCGH) is a rapidly evolving technology that still lacks complete standardization. Yet, it is of great importance to obtain robust and reproducible data to enable meaningful multiple hybridization comparisons. Special difficulties arise when aCGH is performed on archival formalin-fixed, paraffin-embedded (FFPE) tissue due to its variable DNA quality. Recently, we have developed an effective DNA quality test that predicts suitability of archival samples for BAC aCGH. METHODS: In this report, we first used DNA from a cancer cell-line (SKBR3) to optimize the aCGH protocol for automated hybridization, and subsequently optimized and validated the procedure for FFPE breast cancer samples. We aimed for highest throughput, accuracy, and reproducibility applicable to FFPE samples, which can also be important in future diagnostic use. RESULTS: Our protocol of automated array-CGH on archival FFPE ULS-labeled DNA showed very similar results compared with published data and our previous manual hybridization method. CONCLUSION: This report combines automated aCGH on unamplified archival FFPE DNA using non-enzymatic ULS labeling, and describes an optimized protocol for this combination resulting in improved quality and reproducibility

    Mapping of citrullinated fibrinogen B-cell epitopes in rheumatoid arthritis by imaging surface plasmon resonance

    Get PDF
    Introduction Rheumatoid arthritis (RA) frequently involves the loss of tolerance to citrullinated antigens, which may play a role in pathogenicity. Citrullinated fibrinogen is commonly found in inflamed synovial tissue and is a frequent target of autoantibodies in RA patients. To obtain insight into the B-cell response to citrullinated fibrinogen in RA, its autoepitopes were systematically mapped using a new methodology. Methods Human fibrinogen was citrullinated in vitro by peptidylarginine deiminases (PAD), subjected to proteolysis and the resulting peptides were fractionated by ion exchange chromatography. The peptide composition of the citrullinated peptide-containing fractions was determined by high resolution tandem mass spectrometry. The recognition of these fractions by patient sera was subsequently analyzed by imaging surface plasmon resonance on microarrays. Results In total about two-thirds of the 81 arginines of human fibrinogen were found to be susceptible to citrullination by the human PAD2, the human PAD4 or the rabbit PAD2 enzymes. Citrullination sites were found in all three polypeptide chains of fibrinogen, although the α-chain appeared to contain most of them. The analysis of 98 anti-citrullinated protein antibody-positive RA sera using the new methodology allowed the identification of three major citrullinated epitope regions in human fibrinogen, two in the α- and one in the β-chain. Conclusions A comprehensive overview of citrullination sites in human fibrinogen was generated. The multiplex analysis of peptide fractions derived from a post-translationally modified protein, characterized by mass spectrometry, with patient sera provides a versatile system for mapping modified amino acid-containing epitopes. The citrullinated epitopes of human fibrinogen most efficiently recognized by RA autoantibodies are confined to three regions of its polypeptides

    Early Galactic Evolution of Carbon, Nitrogen and Oxygen

    Get PDF
    We present results on carbon, nitrogen, and oxygen abundances for a sample of unevolved metal-poor stars with metallicities in the range -0.3< [Fe/H]< -3. Oxygen abundances derived from different indicators are compared showing consistently that in the range 0.3 >[Fe/H]>-3.0, the [O/Fe] ratio increases from approximately 0 to 1. We find a good agreement between abundances based on the forbidden line, the OH and IR triplet lines when gravities based on Hipparcos} parallaxes are considered for the sample stars. Gravities derived from LTE ionization balance in metal-poor stars with [Fe/H]< -1 are likely too low, and could be responsible for an underestimation of the oxygen abundances derived using the [OI] line. [C/Fe] and [N/Fe] ratios appear to be constant, independently of metallicity, in the same range. However, they show larger scatter than oxygen at a given metallicity, which could reflect the larger variety of stellar production sites for these other elements.Comment: 10 pages, 3 figures, To appear in the proceedings of the conference "The Chemical Evolution of The Milky Way: Stars versus Clusters", eds. F. Matteucci and F. Giovannelli, Vulcano, Italy, September 20-24 199

    Discovery of an Unusual Dwarf Galaxy in the Outskirts of the Milky Way

    Get PDF
    In this Letter, we announce the discovery of a new dwarf galaxy, Leo T, in the Local Group. It was found as a stellar overdensity in the Sloan Digital Sky Survey Data Release 5 (SDSS DR5). The color-magnitude diagram of Leo T shows two well-defined features, which we interpret as a red giant branch and a sequence of young, massive stars. As judged from fits to the color-magnitude diagram, it lies at a distance of about 420 kpc and has an intermediate-age stellar population with a metallicity of [Fe/H]= -1.6, together with a young population of blue stars of age of 200 Myr. There is a compact cloud of neutral hydrogen with mass roughly 10^5 solar masses and radial velocity 35 km/s coincident with the object visible in the HIPASS channel maps. Leo T is the smallest, lowest luminosity galaxy found to date with recent star-formation. It appears to be a transition object similar to, but much lower luminosity than, the Phoenix dwarf.Comment: Ap J (Letters) in press, the subject of an SDSS press release toda

    Small Launch Vehicle Concept Development for Affordable Multi-Stage Inline Configurations

    Get PDF
    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a study of two configurations of a three stage, inline, liquid propellant small launch vehicle concept developed on the premise of maximizing affordability by targeting a specific payload capability range based on current industry demand. The initial configuration, NESC-1, employed liquid oxygen as the oxidizer and rocket propellant grade kerosene as the fuel in all three stages. The second and more heavily studied configuration, NESC-4, employed liquid oxygen and rocket propellant grade kerosene on the first and second stages and liquid oxygen and liquid methane fuel on the third stage. On both vehicles, sensitivity studies were first conducted on specific impulse and stage propellant mass fraction in order to baseline gear ratios and drive the focus of concept development. Subsequent sensitivity and trade studies on the NESC-4 configuration investigated potential impacts to affordability due to changes in gross liftoff weight and/or vehicle complexity. Results are discussed at a high level to understand the severity of certain sensitivities and how those trade studies conducted can either affect cost, performance or both
    corecore