501 research outputs found

    A Review of Graphite and Gold Surface Studies for Use as Substrates in Biological Scanning Tunneling Microscopy Studies

    Get PDF
    The current status of biological Scanning Tunneling Microscopy (STM) investigations and the importance of using a well-characterized substrate are discussed. The findings of over two years of experiments and over 1,000 images obtained on gold substrates prepared by a variety of different methods are statistically summarized and compared to a very flat reference substrate, highly oriented pyrolytic graphite (HOPG). In an effort to begin to corroborate STM results with those obtained from other more established techniques, the results of Auger Electron Spectroscopy (AES) and Electron Spectroscopy for Chemical Analysis (ESCA) of biomolecular STM samples are presented

    Wet Etching and Surface Analysis of Chemically Treated InGaN Films

    Get PDF
    This paper discusses the performance of different wet chemical etchants on InGaN. It is shown that certain etchants can be used to chemically etch and remove appreciable amounts of InGaN even though the etch rate is not as high as observed for other III-V materials. The performance of etchants studied here were (i) two different ratios of HF, HNO3, (ii) cyclic usage of NH4OH followed by HCl, (iii) hot H2SO4 and H3PO4 mixture, and (iv) conc. NH4OH. The etched surfaces have then been analyzed by x-ray photoelectron spectroscopy (XPS). Different etch residues were observed on the top surface. These results suggest an alternative to reactive plasma etching or photo-enhanced electrochemical etching of InGaN type materials. Based on the observed performance of the etchants studied, it was also possible to segregate the surface cleaning protocols and etchants

    Electron Spectroscopy and Atomic Force Microscopy Studies of DNA Adsorption on Mica

    Get PDF
    Various methods for the deposition of deoxyribonucleic acid (DNA) molecules on mica are investigated to determine their reproducibility, and to quantify their ability to bind DNA. The use of these deposition methods for sample preparation for biological scanning tunneling microscopy (STM) and atomic force microscopy (AFM) studies is discussed. Auger electron spectroscopy (AES) and electron spectroscopy for chemical analysis (ESCA) were used to investigate the quantity of DNA adsorbed. AFM images of DNA deposited using the methods investigated are presented. The combination of AFM results with AES and ESCA results provides a basic understanding of the deposition techniques studied and illustrates that electron spectroscopy can be a useful addition to studies of this nature

    Critical Issues: Defining and Debunking Misconceptions in Health, Education, Criminal Justice, and Social Work/Social Services

    Get PDF
    The University of Houston Downtown Committee for the Journal of Family Strengths introduces Volume 18, Issue 1: Critical Issues: Defining and Debunking Misconceptions in Health, Education, Criminal Justice, and Social Work/Social Services

    Soft Ion Sputtering of PAni Studied by XPS, AFM, TOF-SIMS, and STS

    Get PDF
    Herein is a study of the soft sputtering method, gas cluster ion sputtering (GCIS), and its effects on the atomic, morphologic, and band structure properties of polyaniline (PAni) as studied with X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry, atomic force microscopy, and scanning tunneling spectroscopy (STS). The GCIS source used was a 1000 argon atom cluster with 4 keV energy, which resulted in a sputter yield of 3.4 ± 0.2 × 10−3 nm3 per argon atom. Soft ion sputtering reduced the sample by explicitly removing the oxidized contaminants as determined by surface sensitive techniques: XPS and Time-of-flight secondary ion mass spectrometry (TOF-SIMS). By the use of STS we found that by removing the oxidized components, an overall shift of electronic states occurred, transitioning the states closer to the Fermi edge by 0.3 V

    Measuring Accuracy of Automated Parsing and Categorization Tools and Processes in Digital Investigations

    Full text link
    This work presents a method for the measurement of the accuracy of evidential artifact extraction and categorization tasks in digital forensic investigations. Instead of focusing on the measurement of accuracy and errors in the functions of digital forensic tools, this work proposes the application of information retrieval measurement techniques that allow the incorporation of errors introduced by tools and analysis processes. This method uses a `gold standard' that is the collection of evidential objects determined by a digital investigator from suspect data with an unknown ground truth. This work proposes that the accuracy of tools and investigation processes can be evaluated compared to the derived gold standard using common precision and recall values. Two example case studies are presented showing the measurement of the accuracy of automated analysis tools as compared to an in-depth analysis by an expert. It is shown that such measurement can allow investigators to determine changes in accuracy of their processes over time, and determine if such a change is caused by their tools or knowledge.Comment: 17 pages, 2 appendices, 1 figure, 5th International Conference on Digital Forensics and Cyber Crime; Digital Forensics and Cyber Crime, pp. 147-169, 201

    3,4-Methylenedioxymethamphetamine Activates Nuclear Factor- κB, Increases Intracellular Calcium, and Modulates Gene Transcription in Rat Heart Cells

    Get PDF
    3,4-Methylenedioxymethamphetamine (MDMA) is an illicit psychoactive drug that has gained immense popularity among teenagers and young adults. The cardiovascular toxicological consequences of abusing this compound have not been fully characterized. The present study utilized a transient transfection/dual luciferase genetic reporter assay, fluorescence confocal microscopy, and gene expression macroarray technology to determine nuclear factor-κB (NF-κB) activity, intracellular calcium balance, mitochondrial depolarization, and gene transcription profiles, respectively, in cultured rat striated cardiac myocytes (H9c2) exposed to MDMA. At concentrations of 1×10−3 M and 1×10−2 M, MDMA significantly enhanced NF-κB reporter activity compared with 0 M (medium only) control. This response was mitigated by cotransfection with IκB for 1×10−3 M but not 1×10−2 M MDMA. MDMA significantly increased intracellular calcium at concentrations of 1×10−3 M and 1×10−2 M and caused mitochondrial depolarization at 1×10−2 M. MDMA increased the transcription of genes that are considered to be biomarkers in cardiovascular disease and genes that respond to toxic indults. Selected gene activation was verified via temperature-gradient RT-PCR conducted with annealing temperatures ranging from 50°C to 65°C. Collectively, these results suggest that MDMA may be toxic to the heart through its ability to activate the myocardial NF-κB response, disrupt cytosolic calcium and mitochondrial homeostasis, and alter gene transcription

    An apoptosis targeted stimulus with nanosecond pulsed electric fields (nsPEFs) in E4 squamous cell carcinoma

    Get PDF
    Stimuli directed towards activation of apoptosis mechanisms are an attractive approach to eliminate evasion of apoptosis, a ubiquitous cancer hallmark. In these in vitro studies, kinetics and electric field thresholds for several apoptosis characteristics are defined in E4 squamous carcinoma cells (SCC) exposed to ten 300 ns pulses with increasing electric fields. Cell death was >95% at the highest electric field and coincident with phosphatidylserine externalization, caspase and calpain activation in the presence and absence of cytochrome c release, decreases in Bid and mitochondria membrane potential (Δψm) without apparent changes reactive oxygen species levels or in Bcl2 and Bclxl levels. Bid cleavage was caspase-dependent (55–60%) and calcium-dependent (40–45%). Intracellular calcium as an intrinsic mechanism and extracellular calcium as an extrinsic mechanism were responsible for about 30 and 70% of calcium dependence for Bid cleavage, respectively. The results reveal electric field-mediated cell death induction and progression, activating pro-apoptotic-like mechanisms and affecting plasma membrane and intracellular functions, primarily through extrinsic-like pathways with smaller contributions from intrinsic-like pathways. Nanosecond second pulsed electric fields trigger heterogeneous cell death mechanisms in E4 SCC populations to delete them, with caspase-associated cell death as a predominant, but not an unaccompanied event

    Malaria vectors of Timor-Leste

    Get PDF
    Background: The island of Timor lies at the south-eastern edge of Indonesia on the boundary of the Oriental and Australian faunal regions. The country of Timor-Leste, which occupies the eastern part of the island, is malarious but anopheline faunal surveys and malaria vector incrimination date back to the 1960 s. Over the last decade the malaria vectors of south-east Asia and the south-west Pacific have been intensely studied using molecular techniques that can confirm identification within complexes of isomorphic species. The aim of this study is to accurately identify the Anopheles fauna of Timor-Leste using these techniques
    corecore