38 research outputs found

    The malignant phenotype in breast cancer is driven by eIF4A1-mediated changes in the translational landscape

    Get PDF
    Human mRNA DeXD/H-box helicases are ubiquitous molecular motors that are required for the majority of cellular processes that involve RNA metabolism. One of the most abundant is eIF4A, which is required during the initiation phase of protein synthesis to unwind regions of highly structured mRNA that would otherwise impede the scanning ribosome. Dysregulation of protein synthesis is associated with tumorigenesis, but little is known about the detailed relationships between RNA helicase function and the malignant phenotype in solid malignancies. Therefore, immunohistochemical analysis was performed on over 3000 breast tumors to investigate the relationship among expression of eIF4A1, the helicase-modulating proteins eIF4B, eIF4E and PDCD4, and clinical outcome. We found eIF4A1, eIF4B and eIF4E to be independent predictors of poor outcome in ER-negative disease, while in contrast, the eIF4A1 inhibitor PDCD4 was related to improved outcome in ER-positive breast cancer. Consistent with these data, modulation of eIF4A1, eIF4B and PCDC4 expression in cultured MCF7 cells all restricted breast cancer cell growth and cycling. The eIF4A1-dependent translatome of MCF7 cells was defined by polysome profiling, and was shown to be highly enriched for several classes of oncogenic genes, including G-protein constituents, cyclins and protein kinases, and for mRNAs with G/C-rich 5′UTRs with potential to form G-quadruplexes and with 3′UTRs containing microRNA target sites. Overall, our data show that dysregulation of mRNA unwinding contributes to the malignant phenotype in breast cancer via preferential translation of a class of genes involved in pro-oncogenic signaling at numerous levels. Furthermore, immunohistochemical tests are promising biomarkers for tumors sensitive to anti-helicase therapies

    Altered translation of GATA1 in Diamond-Blackfan anemia

    Get PDF
    Ribosomal protein haploinsufficiency occurs in diverse human diseases including Diamond-Blackfan anemia (DBA)[superscript 1, 2], congenital asplenia[superscript 3] and T cell leukemia[superscript 4]. Yet, how mutations in genes encoding ubiquitously expressed proteins such as these result in cell-type– and tissue-specific defects remains unknown[superscript 5]. Here, we identify mutations in GATA1, encoding the critical hematopoietic transcription factor GATA-binding protein-1, that reduce levels of full-length GATA1 protein and cause DBA in rare instances. We show that ribosomal protein haploinsufficiency, the more common cause of DBA, can lead to decreased GATA1 mRNA translation, possibly resulting from a higher threshold for initiation of translation of this mRNA in comparison with other mRNAs. In primary hematopoietic cells from patients with mutations in RPS19, encoding ribosomal protein S19, the amplitude of a transcriptional signature of GATA1 target genes was globally and specifically reduced, indicating that the activity, but not the mRNA level, of GATA1 is decreased in patients with DBA associated with mutations affecting ribosomal proteins. Moreover, the defective hematopoiesis observed in patients with DBA associated with ribosomal protein haploinsufficiency could be partially overcome by increasing GATA1 protein levels. Our results provide a paradigm by which selective defects in translation due to mutations affecting ubiquitous ribosomal proteins can result in human disease.National Institutes of Health (U.S.) (Grant P01 HL32262)National Institutes of Health (U.S.) (Grant U54 HG003067-09

    Human SHBG mRNA Translation Is Modulated by Alternative 5′-Non-Coding Exons 1A and 1B

    Get PDF
    BACKGROUND: The human sex hormone-binding globulin (SHBG) gene comprises at least 6 different transcription units (TU-1, -1A, -1B, -1C, -1D and -1E), and is regulated by no less than 6 different promoters. The best characterized are TU-1 and TU-1A: TU-1 is responsible for producing plasma SHBG, while TU-1A is transcribed and translated in the testis. Transcription of the recently described TU-1B, -1C, and -1D has been demonstrated in human prostate tissue and prostate cancer cell lines, as well as in other human cell lines such as HeLa, HepG2, HeK 293, CW 9019 and imr 32. However, there are no reported data demonstrating their translation. In the present study, we aimed to determine whether TU-1A and TU-1B are indeed translated in the human prostate and whether 5' UTR exons 1A and 1B differently regulate SHBG translation. RESULTS: Cis-regulatory elements that could potentially regulate translation were identified within the 5'UTRs of SHBG TU-1A and TU-1B. Although full-length SHBG TU-1A and TU-1B mRNAs were present in prostate cancer cell lines, the endogenous SHBG protein was not detected by western blot in any of them. LNCaP prostate cancer cells transfected with several SHBG constructs containing exons 2 to 8 but lacking the 5'UTR sequence did show SHBG translation, whereas inclusion of the 5'UTR sequences of either exon 1A or 1B caused a dramatic decrease in SHBG protein levels. The molecular weight of SHBG did not vary between cells transfected with constructs with or without the 5'UTR sequence, thus confirming that the first in-frame ATG of exon 2 is the translation start site of TU-1A and TU-1B. CONCLUSIONS: The use of alternative SHBG first exons 1A and 1B differentially inhibits translation from the ATG situated in exon 2, which codes for methionine 30 of transcripts that begin with the exon 1 sequence

    Development and Applications of Fluorogen/Light-Up RNA Aptamer Pairs for RNA Detection and More.

    Get PDF
    The central role of RNA in living systems made it highly desirable to have noninvasive and sensitive technologies allowing for imaging the synthesis and the location of these molecules in living cells. This need motivated the development of small pro-fluorescent molecules called "fluorogens" that become fluorescent upon binding to genetically encodable RNAs called "light-up aptamers." Yet, the development of these fluorogen/light-up RNA pairs is a long and thorough process starting with the careful design of the fluorogen and pursued by the selection of a specific and efficient synthetic aptamer. This chapter summarizes the main design and the selection strategies used up to now prior to introducing the main pairs. Then, the vast application potential of these molecules for live-cell RNA imaging and other applications is presented and discussed.journal article2020importe

    A tale of two G-quadruplexes

    No full text
    corecore