2,362 research outputs found
Localized surface optical phonon mode in the InGaN/GaN multiple-quantum- wells nanopillars: Raman spectrum and imaging
An interesting phonon mode at around 685-705 cm -1 was clearly observed in the Raman spectra of InGaN/GaN multiple-quantum-wells nanopillars with different diameters at room temperature. The Raman peak position of this mode is found to show a distinct dependence on the nanopillar size, which is in well agreement with theoretical calculation of the surface optical (SO) phonon modes of nanopillars. Moreover, this kind of SO phonon was evidenced to be located on the pillar surface by using scanning confocal micro-Raman microscopy. © 2011 American Institute of Physics.published_or_final_versio
Dynamics of one-dimensional tight-binding models with arbitrary time-dependent external homogeneous fields
The exact propagators of two one-dimensional systems with time-dependent
external fields are presented by following the path-integral method. It is
shown that the Bloch acceleration theorem can be generalized to the
impulse-momentum theorem in quantum version. We demonstrate that an evolved
Gaussian wave packet always keeps its shape in an arbitrary time-dependent
homogeneous driven field. Moreover, that stopping and accelerating of a wave
packet can be achieved by the pulsed field in a diabatic way.Comment: 8 pages, 6 figure
Different mechanisms of cis-9,trans-11- and trans-10,cis-12- conjugated linoleic acid affecting lipid metabolism in 3T3-L1 cells
Conjugated linoleic acid (CLA) has been shown to reduce body fat mass in various experimental animals. It is valuable to identify its influence on enzymes involved in energy expenditure, apoptosis, fatty acid oxidation and lipolysis. We investigated isomer-specific effects of high dose, long treatment of CLA (75.4 Μmol/L, 8 days) on protein and gene expression of these enzymes in cultured 3T3-L1 cells. Proteomics identified significant up- or down-regulation of 52 proteins by either CLA isomer. Protein and gene expression of uncoupling protein (UCP) 1, UCP3, perilipin and peroxisome proliferator-activated receptor (PPAR) α increased whereas UCP2 reduced for both CLA isomers. And eight-day treatment of trans-10,. cis-12 CLA, but not cis-9,. trans-11 CLA, significantly up-regulated protein and mRNA levels of PKA (P<05), CPT-1 and TNF-α (P<01). Compared to protein expression, both isomers did not significantly influence the mRNA expression of HSL, ATGL, ACO and leptin. In conclusion, high-dose, long treatment of cis-9,. trans-11 CLA did not promote apoptosis, fatty acid oxidation and lipolysis in adipocytes, but may induce an increase in energy expenditure. trans-10,. cis-12 CLA exhibited greater influence on lipid metabolism, stimulated adipocyte energy expenditure, apoptosis and fatty acid oxidation, but its effect on lipolysis was not obvious. © 2010 Elsevier Inc.postprin
The Directed Dominating Set Problem: Generalized Leaf Removal and Belief Propagation
A minimum dominating set for a digraph (directed graph) is a smallest set of
vertices such that each vertex either belongs to this set or has at least one
parent vertex in this set. We solve this hard combinatorial optimization
problem approximately by a local algorithm of generalized leaf removal and by a
message-passing algorithm of belief propagation. These algorithms can construct
near-optimal dominating sets or even exact minimum dominating sets for random
digraphs and also for real-world digraph instances. We further develop a core
percolation theory and a replica-symmetric spin glass theory for this problem.
Our algorithmic and theoretical results may facilitate applications of
dominating sets to various network problems involving directed interactions.Comment: 11 pages, 3 figures in EPS forma
Microfluidic droplet grating for reconfigurable optical diffraction
Author name used in this publication: X. M. Zhang2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Phosphorylation of the androgen receptor is associated with reduced survival in hormonerefractory prostate cancer patients
Cell line studies demonstrate that the PI3K/Akt pathway is upregulated in hormone-refractory prostate cancer (HRPC) and can result in phosphorylation of the androgen receptor (AR). The current study therefore aims to establish if this has relevance to the development of clinical HRPC. Immunohistochemistry was employed to investigate the expression and phosphorylation status of Akt and AR in matched hormone-sensitive and -refractory prostate cancer tumours from 68 patients. In the hormone-refractory tissue, only phosphorylated AR (pAR) was associated with shorter time to death from relapse (<i>P</i>=0.003). However, when an increase in expression in the transition from hormone-sensitive to -refractory prostate cancer was investigated, an increase in expression of PI3K was associated with decreased time to biochemical relapse (<i>P</i>=0.014), and an increase in expression of pAkt<sup>473</sup> and pAR<sup>210</sup> were associated with decreased disease-specific survival (<i>P</i>=0.0019 and 0.0015, respectively). Protein expression of pAkt<sup>473</sup> and pAR<sup>210</sup> also strongly correlated (<i>P</i><0.001, c.c.=0.711) in the hormone-refractory prostate tumours. These results provide evidence using clinical specimens, that upregulation of the PI3K/Akt pathway is associated with phosphorylation of the AR during development of HRPC, suggesting that this pathway could be a potential therapeutic target
Ordination as a tool to characterize soil particle size distribution, applied to an elevation gradient at the north slope of the Middle Kunlun Mountains
Soil particle-size distribution (PSD) is one of the most fundamental physical attributes of soil due to its strong influence on other soil properties related to water movement, productivity, and soil erosion. Characterizing variation of PSD in soils is an important issue in environmental research. Using ordination methods to characterize particle size distributions (PSDs) on a small-scale is very limited. In this paper, we selected the Cele River Basin on the north slope of the Middle Kunlun Mountains as a study area and investigated vegetation and soil conditions from 1960 to 4070 m a.s.l. Soil particle-size distributions obtained by laser diffractometry were used as a source data matrix. The Canonical Correspondence Analysis (CCA) ordination was applied to analyse the variation characteristics of PSDs and the relationships between PSDs and environmental factors. Moreover, single fractal dimensions were calculated to support the interpretation of the ordination results. Our results indicate that a differentiation of 16 particle fractions can sufficiently characterize the PSDs in CCA biplots. Elevation has the greatest effect on PSDs: the soil fine fractions increase gradually with increasing elevation. In addition, soil pH, water and total salt content are significantly correlated with PSDs. CCA ordination biplots show that soil and vegetation patterns correspond with one another, indicating a tight link between soil PSDs and plant communities on a small scale in arid regions. The results of fractal dimensions analysis were rather similar to CCA ordination results, but they yielded less detailed information about PSDs. Our study shows that ordination methods can be beneficially used in research into PSDs and, combined with fractal measures, can provide comprehensive information about PSDs. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved
Circuit Quantum Electrodynamics: Coherent Coupling of a Single Photon to a Cooper Pair Box
Under appropriate conditions, superconducting electronic circuits behave
quantum mechanically, with properties that can be designed and controlled at
will. We have realized an experiment in which a superconducting two-level
system, playing the role of an artificial atom, is strongly coupled to a single
photon stored in an on-chip cavity. We show that the atom-photon coupling in
this circuit can be made strong enough for coherent effects to dominate over
dissipation, even in a solid state environment. This new regime of matter light
interaction in a circuit can be exploited for quantum information processing
and quantum communication. It may also lead to new approaches for single photon
generation and detection.Comment: 8 pages, 4 figures, accepted for publication in Nature, embargo does
apply, version with high resolution figures available at:
http://www.eng.yale.edu/rslab/Andreas/content/science/PubsPapers.htm
- …