386 research outputs found

    Investment in carbon dioxide capture and storage combined with enhanced water recovery

    Get PDF
    Carbon dioxide capture and storage combined with enhanced deep saline water recovery (CCS-EWR) is a potential approach to mitigate climate change. However, its investment has been a dilemma due to high costs and various uncertainties. In this study, a trinomial tree modelling-based real options approach is constructed to assess the investment in CCS-EWR retrofitting for direct coal liquefaction in China from the investor perspective. In this approach, the uncertainties in CO2 prices, capital subsidies, water resource fees, the residual lifetime of direct coal liquefaction plants, electricity prices, CO2 and freshwater transport distance, and the amount of certified emission reductions (CERs) are considered. The results show that the critical CER price for CCS-EWR retrofits is 7.15 Chinese yuan per ton (CNY/ton) higher than that (141.95 CNY/ton) for CCS retrofits. However, the exemption from water resource fees for freshwater recovered from saline water and a subsidy of 26% of the capital cost are sufficient to eliminate the negative impact of enhanced deep saline water recovery (EWR) on the investment economy of CCS-EWR. In addition, when the residual lifetime is less than 14 years, CCS-EWR projects are still unable to achieve profitability, even with flexible management and decision making; therefore, investors should abandon CCS-EWR investments. On the whole, the investment feasibility for CCS-EWR technology is not optimistic despite access to preferential policies from the government. It is necessary to establish a carbon market with a high and stable CER price

    Mice have a transcribed L-threonine aldolase/GLY1 gene, but the human GLY1 gene is a non-processed pseudogene

    Get PDF
    BACKGROUND: There are three pathways of L-threonine catabolism. The enzyme L-threonine aldolase (TA) has been shown to catalyse the conversion of L-threonine to yield glycine and acetaldehyde in bacteria, fungi and plants. Low levels of TA enzymatic activity have been found in vertebrates. It has been suggested that any detectable activity is due to serine hydroxymethyltransferase and that mammals lack a genuine threonine aldolase. RESULTS: The 7-exon murine L-threonine aldolase gene (GLY1) is located on chromosome 11, spanning 5.6 kb. The cDNA encodes a 400-residue protein. The protein has 81% similarity with the bacterium Thermotoga maritima TA. Almost all known functional residues are conserved between the two proteins including Lys242 that forms a Schiff-base with the cofactor, pyridoxal-5'-phosphate. The human TA gene is located at 17q25. It contains two single nucleotide deletions, in exons 4 and 7, which cause frame-shifts and a premature in-frame stop codon towards the carboxy-terminal. Expression of human TA mRNA was undetectable by RT-PCR. In mice, TA mRNA was found at low levels in a range of adult tissues, being highest in prostate, heart and liver. In contrast, serine/threonine dehydratase, another enzyme that catabolises L-threonine, is expressed very highly only in the liver. Serine dehydratase-like 1, also was most abundant in the liver. In whole mouse embryos TA mRNA expression was low prior to E-15 increasing more than four-fold by E-17. CONCLUSION: Mice, the western-clawed frog and the zebrafish have transcribed threonine aldolase/GLY1 genes, but the human homolog is a non-transcribed pseudogene. Serine dehydratase-like 1 is a putative L-threonine catabolising enzyme

    Genome-Wide Association Meta-analysis of Neuropathologic Features of Alzheimer's Disease and Related Dementias

    Get PDF
    Alzheimer's disease (AD) and related dementias are a major public health challenge and present a therapeutic imperative for which we need additional insight into molecular pathogenesis. We performed a genome-wide association study and analysis of known genetic risk loci for AD dementia using neuropathologic data from 4,914 brain autopsies. Neuropathologic data were used to define clinico-pathologic AD dementia or controls, assess core neuropathologic features of AD (neuritic plaques, NPs; neurofibrillary tangles, NFTs), and evaluate commonly co-morbid neuropathologic changes: cerebral amyloid angiopathy (CAA), Lewy body disease (LBD), hippocampal sclerosis of the elderly (HS), and vascular brain injury (VBI). Genome-wide significance was observed for clinico-pathologic AD dementia, NPs, NFTs, CAA, and LBD with a number of variants in and around the apolipoprotein E gene (APOE). GalNAc transferase 7 (GALNT7), ATP-Binding Cassette, Sub-Family G (WHITE), Member 1 (ABCG1), and an intergenic region on chromosome 9 were associated with NP score; and Potassium Large Conductance Calcium-Activated Channel, Subfamily M, Beta Member 2 (KCNMB2) was strongly associated with HS. Twelve of the 21 non-APOE genetic risk loci for clinically-defined AD dementia were confirmed in our clinico-pathologic sample: CR1, BIN1, CLU, MS4A6A, PICALM, ABCA7, CD33, PTK2B, SORL1, MEF2C, ZCWPW1, and CASS4 with 9 of these 12 loci showing larger odds ratio in the clinico-pathologic sample. Correlation of effect sizes for risk of AD dementia with effect size for NFTs or NPs showed positive correlation, while those for risk of VBI showed a moderate negative correlation. The other co-morbid neuropathologic features showed only nominal association with the known AD loci. Our results discovered new genetic associations with specific neuropathologic features and aligned known genetic risk for AD dementia with specific neuropathologic changes in the largest brain autopsy study of AD and related dementias

    Exceptionally low likelihood of Alzheimer's dementia in APOE2 homozygotes from a 5,000-person neuropathological study

    Get PDF
    Each additional copy of the apolipoprotein E4 (APOE4) allele is associated with a higher risk of Alzheimer's dementia, while the APOE2 allele is associated with a lower risk of Alzheimer's dementia, it is not yet known whether APOE2 homozygotes have a particularly low risk. We generated Alzheimer's dementia odds ratios and other findings in more than 5,000 clinically characterized and neuropathologically characterized Alzheimer's dementia cases and controls. APOE2/2 was associated with a low Alzheimer's dementia odds ratios compared to APOE2/3 and 3/3, and an exceptionally low odds ratio compared to APOE4/4, and the impact of APOE2 and APOE4 gene dose was significantly greater in the neuropathologically confirmed group than in more than 24,000 neuropathologically unconfirmed cases and controls. Finding and targeting the factors by which APOE and its variants influence Alzheimer's disease could have a major impact on the understanding, treatment and prevention of the disease

    Phosphorylation of AIB1 at Mitosis Is Regulated by CDK1/CYCLIN B

    Get PDF
    Although the AIB1 oncogene has an important role during the early phase of the cell cycle as a coactivator of E2F1, little is known about its function during mitosis.Mitotic cells isolated by nocodazole treatment as well as by shake-off revealed a post-translational modification occurring in AIB1 specifically during mitosis. This modification was sensitive to the treatment with phosphatase, suggesting its modification by phosphorylation. Using specific inhibitors and in vitro kinase assays we demonstrate that AIB1 is phosphorylated on Ser728 and Ser867 by Cdk1/cyclin B at the onset of mitosis and remains phosphorylated until exit from M phase. Differences in the sensitivity to phosphatase inhibitors suggest that PP1 mediates dephosphorylation of AIB1 at the end of mitosis. The phosphorylation of AIB1 during mitosis was not associated with ubiquitylation or degradation, as confirmed by western blotting and flow cytometry analysis. In addition, luciferase reporter assays showed that this phosphorylation did not alter the transcriptional properties of AIB1. Importantly, fluorescence microscopy and sub-cellular fractionation showed that AIB1 phosphorylation correlated with the exclusion from the condensed chromatin, thus preventing access to the promoters of AIB1-dependent genes. Phospho-specific antibodies developed against Ser728 further demonstrated the presence of phosphorylated AIB1 only in mitotic cells where it was localized preferentially in the periphery of the cell.Collectively, our results describe a new mechanism for the regulation of AIB1 during mitosis, whereby phosphorylation of AIB1 by Cdk1 correlates with the subcellular redistribution of AIB1 from a chromatin-associated state in interphase to a more peripheral localization during mitosis. At the exit of mitosis, AIB1 is dephosphorylated, presumably by PP1. This exclusion from chromatin during mitosis may represent a mechanism for governing the transcriptional activity of AIB1

    Chemokine gene expression in lung CD8 T cells correlates with protective immunity in mice immunized intra-nasally with Adenovirus-85A

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immunization of BALB/c mice with a recombinant adenovirus expressing <it>Mycobacterium tuberculosis </it>(<it>M. tuberculosis</it>) antigen 85A (Ad85A) protects against aerosol challenge with <it>M. tuberculosis </it>only when it is administered intra-nasally (i.n.). Immunization with Ad85A induces a lung-resident population of activated CD8 T cells that is antigen dependent, highly activated and mediates protection by early inhibition of <it>M. tuberculosis </it>growth. In order to determine why the i.n. route is so effective compared to parenteral immunization, we used microarray analysis to compare gene expression profiles of pulmonary and splenic CD8 T cells after i.n. or intra-dermal (i.d.) immunization.</p> <p>Method</p> <p>Total RNA from CD8 T cells was isolated from lungs or spleens of mice immunized with Ad85A by the i.n. or i.d. route. The gene profiles generated from each condition were compared. Statistically significant (p ≤ 0.05) differentially expressed genes were analyzed to determine if they mapped to particular molecular functions, biological processes or pathways using Gene Ontology and Panther DB mapping tools.</p> <p>Results</p> <p>CD8 T cells from lungs of i.n. immunized mice expressed a large number of chemokines chemotactic for resting and activated T cells as well as activation and survival genes. Lung lymphocytes from i.n. immunized mice also express the chemokine receptor gene <it>Cxcr6</it>, which is thought to aid long-term retention of antigen-responding T cells in the lungs. Expression of CXCR6 on CD8 T cells was confirmed by flow cytometry.</p> <p>Conclusions</p> <p>Our microarray analysis represents the first <it>ex vivo </it>study comparing gene expression profiles of CD8 T cells isolated from distinct sites after immunization with an adenoviral vector by different routes. It confirms earlier phenotypic data indicating that lung i.n. cells are more activated than lung i.d. CD8 T cells. The sustained expression of chemokines and activation genes enables CD8 T cells to remain in the lungs for extended periods after i.n. immunization. This may account for the early inhibition of <it>M. tuberculosis </it>growth observed in Ad85A i.n. immunized mice and explain the effectiveness of i.n. compared to parenteral immunization with this viral vector.</p

    Conditionally reprogrammed primary airway epithelial cells maintain morphology, lineage and disease specific functional characteristics

    Get PDF
    © 2017 The Author(s). Current limitations to primary cell expansion led us to test whether airway epithelial cells derived from healthy children and those with asthma and cystic fibrosis (CF), co-cultured with an irradiated fibroblast feeder cell in F-medium containing 10 µM ROCK inhibitor could maintain their lineage during expansion and whether this is influenced by underlying disease status. Here, we show that conditionally reprogrammed airway epithelial cells (CRAECs) can be established from both healthy and diseased phenotypes. CRAECs can be expanded, cryopreserved and maintain phenotypes over at least 5 passages. Population doublings of CRAEC cultures were significantly greater than standard cultures, but maintained their lineage characteristics. CRAECs from all phenotypes were also capable of fully differentiating at air-liquid interface (ALI) and maintained disease specific characteristics including; defective CFTR channel function cultures and the inability to repair wounds. Our findings indicate that CRAECs derived from children maintain lineage, phenotypic and importantly disease-specific functional characteristics over a specified passage range

    Experimental infection parameters in Galea spixii (Rodentia: Caviidae) with Leishmania infantum chagasi

    Full text link
    In order to better understand the epidemiological transmission network of leishmaniasis, an endemic disease in Northeast Brazil, we investigated the susceptibility of Spix yellow-toothed cavies (Galea spixii) to the Leishmania infantum chagasi parasite. Nine cavies were experimentally infected, separated into three groups and monitored at 30, 90 and 180 days, respectively. Amastigotes were identified in the spleen slides of two cavies killed 180 days after infection. Antibodies against the L. i. chagasi were identified in one of the cavies. This demonstrates that G. spixii is in fact capable of maintaining a stable infection by L. i. chagasi without alterations in biochemical and hematological parameters of the host and without perceivable micro and macroscopic lesions

    Eef1a2 Promotes Cell Growth, Inhibits Apoptosis and Activates JAK/STAT and AKT Signaling in Mouse Plasmacytomas

    Get PDF
    The canonical function of EEF1A2, normally expressed only in muscle, brain, and heart, is in translational elongation, but recent studies suggest a non-canonical function as a proto-oncogene that is overexpressed in a variety of solid tumors including breast and ovary. Transcriptional profiling of a spectrum of primary mouse B cell lineage neoplasms showed that transcripts encoding EEF1A2 were uniquely overexpressed in plasmacytomas (PCT), tumors of mature plasma cells. Cases of human multiple myeloma expressed significantly higher levels of EEF1A2 transcripts than normal bone marrow plasma cells. High-level expression was also a feature of a subset of cell lines developed from mouse PCT and from the human MM.Heightened expression of EEF1A2 was not associated with increased copy number or coding sequence mutations. shRNA-mediated knockdown of Eef1a2 transcripts and protein was associated with growth inhibition due to delayed G1-S progression, and effects on apoptosis that were seen only under serum-starved conditions. Transcriptional profiles and western blot analyses of knockdown cells revealed impaired JAK/STAT and PI3K/AKT signaling suggesting their contributions to EEF1A2-mediated effects on PCT induction or progression.EEF1A2 may play contribute to the induction or progression of some PCT and a small percentage of MM. Eef1a2 could also prove to be a useful new marker for a subset of MM and, ultimately, a possible target for therapy
    • …
    corecore