40 research outputs found

    Host microenvironment in breast cancer development: Inflammatory cells, cytokines and chemokines in breast cancer progression: reciprocal tumor–microenvironment interactions

    Get PDF
    A comprehensive overview of breast cancer development and progression suggests that the process is influenced by intrinsic properties of the tumor cells, as well as by microenvironmental factors. Indeed, in breast carcinoma, an intensive interplay exists between the tumor cells on one hand, and inflammatory cells/cytokines/chemokines on the other. The purpose of the present review is to outline the reciprocal interactions that exist between these different elements, and to shed light on their potential involvement in breast cancer development and progression

    Optical imaging of the peri-tumoral inflammatory response in breast cancer

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>Peri-tumoral inflammation is a common tumor response that plays a central role in tumor invasion and metastasis, and inflammatory cell recruitment is essential to this process. The purpose of this study was to determine whether injected fluorescently-labeled monocytes accumulate within murine breast tumors and are visible with optical imaging.</p> <p>Materials and methods</p> <p>Murine monocytes were labeled with the fluorescent dye DiD and subsequently injected intravenously into 6 transgenic MMTV-PymT tumor-bearing mice and 6 FVB/n control mice without tumors. Optical imaging (OI) was performed before and after cell injection. Ratios of post-injection to pre-injection fluorescent signal intensity of the tumors (MMTV-PymT mice) and mammary tissue (FVB/n controls) were calculated and statistically compared.</p> <p>Results</p> <p>MMTV-PymT breast tumors had an average post/pre signal intensity ratio of 1.8+/- 0.2 (range 1.1-2.7). Control mammary tissue had an average post/pre signal intensity ratio of 1.1 +/- 0.1 (range, 0.4 to 1.4). The p-value for the difference between the ratios was less than 0.05. Confocal fluorescence microscopy confirmed the presence of DiD-labeled cells within the breast tumors.</p> <p>Conclusion</p> <p>Murine monocytes accumulate at the site of breast cancer development in this transgenic model, providing evidence that peri-tumoral inflammatory cell recruitment can be evaluated non-invasively using optical imaging.</p

    A Distinct Macrophage Population Mediates Metastatic Breast Cancer Cell Extravasation, Establishment and Growth

    Get PDF
    Background: The stromal microenvironment and particularly the macrophage component of primary tumors influence their malignant potential. However, at the metastatic site the role of these cells and their mechanism of actions for establishment and growth of metastases remain largely unknown. Methodology/Principal Findings: Using animal models of breast cancer metastasis, we show that a population of host macrophages displaying a distinct phenotype is recruited to extravasating pulmonary metastatic cells regardless of species of origin. Ablation of this macrophage population through three independent means (genetic and chemical) showed that these macrophages are required for efficient metastatic seeding and growth. Importantly, even after metastatic growth is established, ablation of this macrophage population inhibited subsequent growth. Furthermore, imaging of intact lungs revealed that macrophages are required for efficient tumor cell extravasation. Conclusion/Significance: These data indicate a direct enhancement of metastatic growth by macrophages through their effects on tumor cell extravasation, survival and subsequent growth and identifies these cells as a new therapeutic target fo

    CD105 is a more appropriate marker for evaluating angiogenesis in urothelial cancer of the upper urinary tract than CD31 or CD34

    Get PDF
    Angiogenesis plays an important role in cancer progression in many types of cancer. Evaluation of angiogenesis is often performed, but the optimal methodology for human cancer has not been agreed upon. As adequate evaluation of angiogenesis in cancer tissues might be important for prediction of prognosis and treatment decisions, we evaluated angiogenesis semiquantitatively by assessing microvessel density (MVD) in urothelial cancer of the upper urinary tract (UC-UUT). We compared the performance of three endothelial cell markers (CD31, CD34, and CD105) on formalin-fixed tissues from 122 patients diagnosed with UC-UUT without metastasis. Vascular endothelial growth factor (VEGF)-A expression was also evaluated immunohistochemically. Correlations between MVD with each marker and pT stage, grade, survival, and VEGF-A expression were investigated. Mean (standard deviation) MVD as estimated by immunohistochemical staining with anti-CD31, anti-CD34, and anti-CD105 were 47.1 (17.9)/high-power field (HPF), 70.9 (19.5)/HPF, and 31.2 (16.7)/HPF, respectively. Although all MVDs were significantly associated with pT stage and grade, CD105-MVD showed the strongest association. Similarly, CD105-MVD showed the strongest correlation with VEGF-A expression (r = 0.530, p < 0.001). Although all MVDs were associated with metastasis-free survival and cause-specific survival on univariate analysis, only CD105-MVD was retained as an independent predictor in multivariate analysis including pT stage and grade. CD105-MVD may be the preferred marker for semiquantitative assessment of angiogenesis in patients with UC-UUT
    corecore