20 research outputs found
Small chromosomes among Danish Candida glabrata isolates originated through different mechanisms
We analyzed 192 strains of the pathogenic yeast Candida glabrata from patients, mainly suffering from systemic infection, at Danish hospitals during 1985-1999. Our analysis showed that these strains were closely related but exhibited large karyotype polymorphism. Nine strains contained small chromosomes, which were smaller than 0.5 Mb. Regarding the year, patient and hospital, these C. glabrata strains had independent origin and the analyzed small chromosomes were structurally not related to each other (i.e. they contained different sets of genes). We suggest that at least two mechanisms could participate in their origin: (i) through a segmental duplication which covered the centromeric region, or (ii) by a translocation event moving a larger chromosome arm to another chromosome that leaves the centromere part with the shorter arm. The first type of small chromosomes carrying duplicated genes exhibited mitotic instability, while the second type, which contained the corresponding genes in only one copy in the genome, was mitotically stable. Apparently, in patients C. glabrata chromosomes are frequently reshuffled resulting in new genetic configurations, including appearance of small chromosomes, and some of these resulting "mutant" strains can have increased fitness in a certain patient "environment"
Contribution of CgPDR1-Regulated Genes in Enhanced Virulence of Azole-Resistant Candida glabrata
In Candida glabrata, the transcription factor CgPdr1 is involved
in resistance to azole antifungals via upregulation of ATP binding cassette
(ABC)-transporter genes including at least CgCDR1,
CgCDR2 and CgSNQ2. A high diversity of GOF
(gain-of-function) mutations in CgPDR1 exists for the
upregulation of ABC-transporters. These mutations enhance C.
glabrata virulence in animal models, thus indicating that
CgPDR1 might regulate the expression of yet unidentified
virulence factors. We hypothesized that CgPdr1-dependent virulence factor(s)
should be commonly regulated by all GOF mutations in CgPDR1. As
deduced from transcript profiling with microarrays, a high number of genes (up
to 385) were differentially regulated by a selected number (7) of GOF mutations
expressed in the same genetic background. Surprisingly, the transcriptional
profiles resulting from expression of GOF mutations showed minimal overlap in
co-regulated genes. Only two genes, CgCDR1 and
PUP1 (for PDR1
upregulated and encoding a mitochondrial protein), were
commonly upregulated by all tested GOFs. While both genes mediated azole
resistance, although to different extents, their deletions in an azole-resistant
isolate led to a reduction of virulence and decreased tissue burden as compared
to clinical parents. As expected from their role in C. glabrata
virulence, the two genes were expressed as well in vitro and
in vivo. The individual overexpression of these two genes
in a CgPDR1-independent manner could partially restore
phenotypes obtained in clinical isolates. These data therefore demonstrate that
at least these two CgPDR1-dependent and -upregulated genes
contribute to the enhanced virulence of C. glabrata that
acquired azole resistance
Machbarkeit und Akzeptanz von cervicovaginaler Selbstbeprobung in der Nationalen Kohorte (Pretest 2)
Characterisation of an ABC transporter of a resistant Candida glabrata clinical isolate
BACKGROUND Candida glabrata ranks second in epidemiological surveillance studies, and is considered one of the main human yeast pathogens. Treatment of Candida infections represents a contemporary public health problem due to the limited availability of an antifungal arsenal, toxicity effects and increasing cases of resistance. C. glabrata presents intrinsic fluconazole resistance and is a significant concern in clinical practice and in hospital environments. OBJECTIVE The aim of this study was to characterise the azole resistance mechanism presented by a C. glabrata clinical isolate from a Brazilian university hospital. METHODS Azole susceptibility assays, chemosensitisation, flow cytometry and mass spectrometry were performed. FINDINGS Our study demonstrated extremely high resistance to all azoles tested: fluconazole, voriconazole, posaconazole and itraconazole. This isolate was chemosensitised by FK506, a classical inhibitor of ABC transporters related to azole resistance, and Rhodamine 6G extrusion was observed. A mass spectrometry assay confirmed the ABC protein identification suggesting the probable role of efflux pumps in this resistance phenotype. MAIN CONCLUSIONS This study emphasizes the importance of ABC proteins and their relation to the resistance mechanism in hospital environments and they may be an important target for the development of compounds able to unsettle drug extrusion
Candida glabrata : a review of its features and resistance
Candida species belong to the normal microbiota of the oral cavity and gastrointestinal and vaginal tracts, and are responsible for several clinical manifestations, from mucocutaneous overgrowth to bloodstream infections. Once believed to be non-pathogenic, Candida glabrata was rapidly blamable for many human diseases. Year after year, these pathological circumstances are more recurrent and problematic to treat, especially when patients reveal any level of immunosuppression. These difficulties arise from the capacity of C. glabrata to form biofilms and also from its high resistance to traditional antifungal therapies. Thus, this review intends to present an excerpt of the biology, epidemiology, and pathology of C. glabrata, and detail an approach to its resistance mechanisms based on studies carried out up to the present.The authors are grateful to strategic project PTDC/SAU-MIC/119069/2010 for the financial support to the research center and for Celia F. Rodrigues' grant