36 research outputs found

    Radioactive Holmium Acetylacetonate Microspheres for Interstitial Microbrachytherapy: An In Vitro and In Vivo Stability Study

    Get PDF
    Purpose The clinical application of holmium acetylacetonate microspheres (HoAcAcMS) for the intratumoral radionuclide treatment of solid malignancies requires a thorough understanding of their stability. Therefore, an in vitro and an in vivo stability study with HoAcAcMS was conducted. Methods HoAcAcMS, before and after neutron irradiation, were incubated in a phosphate buffer at 37°C for 6 months. The in vitro release of holmium in this buffer after 6 months was 0.5%. Elemental analysis, scanning electron microscopy, infrared spectroscopy and time of flight secondary ion mass spectrometry were performed on the HoAcAcMS. Results After 4 days in buffer the acetylacetonate ligands were replaced by phosphate, without altering the particle size and surface morphology. HoAcAcMS before and after neutron irradiation were administered intratumorally in VX2 tumor-bearing rabbits. No holmium was detected in the faeces, urine, femur and blood. Histological examination of the tumor revealed clusters of intact microspheres amidst necrotic tissue after 30 days. Conclusion HoAcAcMS are stable both in vitro and in vivo and are suitable for intratumoral radionuclide treatment.Radiation, Radionuclides and ReactorsApplied Science

    Plasma-deposited hybrid silica membranes with a controlled retention of organic bridges

    Get PDF
    Hybrid organically bridged silica membranes are suitable for energy-efficient molecular separations under harsh industrial conditions. Such membranes can be useful in organic solvent nanofiltration if they can be deposited on flexible, porous and large area supports. Here, we report the proof of concept for applying an expanding thermal plasma to the synthesis of perm-selective hybrid silica films from an organically bridged monomer, 1,2-bis(triethoxysilyl)ethane. This membrane is the first in its class to be produced by plasma enhanced chemical vapor deposition. By tuning the plasma and process parameters, the organic bridging groups could be retained in the separating layer. This way, a defect free film could be made with pervaporation performances of an n-butanol–water mixture comparable with those of conventional ceramic supported membranes made by sol–gel technology (i.e. a water flux of 1.8 kg m2 h1, a water concentration in the permeate higher than 98% and a separation factor of >1100). The obtained results show the suitability of expanding thermal plasma as a technology for the deposition of hybrid silica membranes for molecular separations

    Combined Dislocation of the Trapezium and the Trapezoid: A Case Report with Review of the Literature

    No full text
    Dislocation of the either the trapezium or the trapezoid are both rare injuries, even among carpal dislocations. We report a case of combined volar trapezium dislocation and dorsal trapezoid dislocation with other concomitant injuries. A review of the literature regarding trapezium and trapezoid dislocations as well as the treatment of these injuries is presented
    corecore