37 research outputs found

    On the Theory of Evolution Versus the Concept of Evolution: Three Observations

    Get PDF
    Here we address three misconceptions stated by Rice et al. in their observations of our article Paz-y-Miño and Espinosa (Evo Edu Outreach 2:655–675, 2009), published in this journal. The five authors titled their note “The Theory of Evolution is Not an Explanation for the Origin of Life.” First, we argue that it is fallacious to believe that because the formulation of the theory of evolution, as conceived in the 1800s, did not include an explanation for the origin of life, nor of the universe, the concept of evolution would not allow us to hypothesize the possible beginnings of life and its connections to the cosmos. Not only Stanley Miller’s experiments of 1953 led scientists to envision a continuum from the inorganic world to the origin and diversification of life, but also Darwin’s own writings of 1871. Second, to dismiss the notion of Rice et al. that evolution does not provide explanations concerning the universe or the cosmos, we identify compelling scientific discussions on the topics: Zaikowski et al. (Evo Edu Outreach 1:65–73, 2008), Krauss (Evo Edu Outreach 3:193–197, 2010), Peretó et al. (Orig Life Evol Biosph 39:395–406, 2009) and Follmann and Brownson (Naturwissenschaften 96:1265–1292, 2009). Third, although we acknowledge that the term Darwinism may not be inclusive of all new discoveries in evolution, and also that creationists and Intelligent Designers hijack the term to portray evolution as ideology, we demonstrate that there is no statistical evidence suggesting that the word Darwinism interferes with public acceptance of evolution, nor does the inclusion of the origin of life or the universe within the concept of evolution. We examine the epistemological and empirical distinction between the theory of evolution and the concept of evolution and conclude that, although the distinction is important, it should not compromise scientific logic

    Quantitative Analysis of Protein Phosphorylations and Interactions by Multi-Colour IP-FCM as an Input for Kinetic Modelling of Signalling Networks

    Get PDF
    BACKGROUND: To understand complex biological signalling mechanisms, mathematical modelling of signal transduction pathways has been applied successfully in last few years. However, precise quantitative measurements of signal transduction events such as activation-dependent phosphorylation of proteins, remains one bottleneck to this success. METHODOLOGY/PRINCIPAL FINDINGS: We use multi-colour immunoprecipitation measured by flow cytometry (IP-FCM) for studying signal transduction events to unrivalled precision. In this method, antibody-coupled latex beads capture the protein of interest from cellular lysates and are then stained with differently fluorescent-labelled antibodies to quantify the amount of the immunoprecipitated protein, of an interaction partner and of phosphorylation sites. The fluorescence signals are measured by FCM. Combining this procedure with beads containing defined amounts of a fluorophore allows retrieving absolute numbers of stained proteins, and not only relative values. Using IP-FCM we derived multidimensional data on the membrane-proximal T-cell antigen receptor (TCR-CD3) signalling network, including the recruitment of the kinase ZAP70 to the TCR-CD3 and subsequent ZAP70 activation by phosphorylation in the murine T-cell hybridoma and primary murine T cells. Counter-intuitively, these data showed that cell stimulation by pervanadate led to a transient decrease of the phospho-ZAP70/ZAP70 ratio at the TCR. A mechanistic mathematical model of the underlying processes demonstrated that an initial massive recruitment of non-phosphorylated ZAP70 was responsible for this behaviour. Further, the model predicted a temporal order of multisite phosphorylation of ZAP70 (with Y319 phosphorylation preceding phosphorylation at Y493) that we subsequently verified experimentally. CONCLUSIONS/SIGNIFICANCE: The quantitative data sets generated by IP-FCM are one order of magnitude more precise than Western blot data. This accuracy allowed us to gain unequalled insight into the dynamics of the TCR-CD3-ZAP70 signalling network

    Stochastic simulations of minimal cells: the Ribocell model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the last two decades, lipid compartments (liposomes, lipid-coated droplets) have been extensively used as in vitro "minimal" cell models. In particular, simple and complex biomolecular reactions have been carried out inside these self-assembled micro- and nano-sized compartments, leading to the synthesis of RNA and functional proteins inside liposomes. Despite this experimental progress, a detailed physical understanding of the underlying dynamics is missing. In particular, the combination of solute compartmentalization, reactivity and stochastic effects has not yet been clarified. A combination of experimental and computational approaches can reveal interesting mechanisms governing the behavior of micro compartmentalized systems, in particular by highlighting the intrinsic stochastic diversity within a population of "synthetic cells".</p> <p>Methods</p> <p>In this context, we have developed a computational platform called ENVIRONMENT suitable for studying the stochastic time evolution of reacting lipid compartments. This software - which implements a Gillespie Algorithm - is an improvement over a previous program that simulated the stochastic time evolution of homogeneous, fixed-volume, chemically reacting systems, extending it to more general conditions in which a collection of similar such systems interact and change over the course of time. In particular, our approach is focused on elucidating the role of randomness in the time behavior of chemically reacting lipid compartments, such as micelles, vesicles or micro emulsions, in regimes where random fluctuations due to the stochastic nature of reacting events can lead an open system towards unexpected time evolutions.</p> <p>Results</p> <p>This paper analyses the so-called Ribocell (RNA-based cell) model. It consists in a hypothetical minimal cell based on a self-replicating minimum RNA genome coupled with a self-reproducing lipid vesicle compartment. This model assumes the existence of two ribozymes, one able to catalyze the conversion of molecular precursors into lipids and the second able to replicate RNA strands. The aim of this contribution is to explore the feasibility of this hypothetical minimal cell. By deterministic kinetic analysis, the best external conditions to observe synchronization between genome self-replication and vesicle membrane reproduction are determined, while its robustness to random fluctuations is investigated using stochastic simulations, and then discussed.</p

    Computer Simulation on the Cooperation of Functional Molecules during the Early Stages of Evolution

    Get PDF
    It is very likely that life began with some RNA (or RNA-like) molecules, self-replicating by base-pairing and exhibiting enzyme-like functions that favored the self-replication. Different functional molecules may have emerged by favoring their own self-replication at different aspects. Then, a direct route towards complexity/efficiency may have been through the coexistence/cooperation of these molecules. However, the likelihood of this route remains quite unclear, especially because the molecules would be competing for limited common resources. By computer simulation using a Monte-Carlo model (with “micro-resolution” at the level of nucleotides and membrane components), we show that the coexistence/cooperation of these molecules can occur naturally, both in a naked form and in a protocell form. The results of the computer simulation also lead to quite a few deductions concerning the environment and history in the scenario. First, a naked stage (with functional molecules catalyzing template-replication and metabolism) may have occurred early in evolution but required high concentration and limited dispersal of the system (e.g., on some mineral surface); the emergence of protocells enabled a “habitat-shift” into bulk water. Second, the protocell stage started with a substage of “pseudo-protocells”, with functional molecules catalyzing template-replication and metabolism, but still missing the function involved in the synthesis of membrane components, the emergence of which would lead to a subsequent “true-protocell” substage. Third, the initial unstable membrane, composed of prebiotically available fatty acids, should have been superseded quite early by a more stable membrane (e.g., composed of phospholipids, like modern cells). Additionally, the membrane-takeover probably occurred at the transition of the two substages of the protocells. The scenario described in the present study should correspond to an episode in early evolution, after the emergence of single “genes”, but before the appearance of a “chromosome” with linked genes

    Lethal Mutants and Truncated Selection Together Solve a Paradox of the Origin of Life

    Get PDF
    BACKGROUND: Many attempts have been made to describe the origin of life, one of which is Eigen's cycle of autocatalytic reactions [Eigen M (1971) Naturwissenschaften 58, 465-523], in which primordial life molecules are replicated with limited accuracy through autocatalytic reactions. For successful evolution, the information carrier (either RNA or DNA or their precursor) must be transmitted to the next generation with a minimal number of misprints. In Eigen's theory, the maximum chain length that could be maintained is restricted to 100-1000 nucleotides, while for the most primitive genome the length is around 7000-20,000. This is the famous error catastrophe paradox. How to solve this puzzle is an interesting and important problem in the theory of the origin of life. METHODOLOGY/PRINCIPAL FINDINGS: We use methods of statistical physics to solve this paradox by carefully analyzing the implications of neutral and lethal mutants, and truncated selection (i.e., when fitness is zero after a certain Hamming distance from the master sequence) for the critical chain length. While neutral mutants play an important role in evolution, they do not provide a solution to the paradox. We have found that lethal mutants and truncated selection together can solve the error catastrophe paradox. There is a principal difference between prebiotic molecule self-replication and proto-cell self-replication stages in the origin of life. CONCLUSIONS/SIGNIFICANCE: We have applied methods of statistical physics to make an important breakthrough in the molecular theory of the origin of life. Our results will inspire further studies on the molecular theory of the origin of life and biological evolution

    Once upon a time the cell membranes: 175 years of cell boundary research

    Get PDF
    corecore