21 research outputs found

    Global Gene Expression Analysis in the Livers of Rat Offspring Perinatally Exposed to Low Doses of 2,2′,4,4′-Tetrabromodiphenyl Ether

    Get PDF
    BACKGROUND: Polybrominated diphenyl ethers are a group of flame-retardant chemicals appearing increasingly in the environment. Their health effects and mechanisms of toxicity are poorly understood. OBJECTIVES: We screened for the sensitive effects and mechanisms of toxicity of 2,2 ,4,4 -tetra-bromodiphenyl ether (BDE-47) by analyzing the gene expression profile in rats exposed to doses comparable to human exposure. METHODS: Wistar dams were exposed to vehicle or BDE-47 (0.002 and 0.2 mg/kg body weight) every fifth day from gestation day 15 to postnatal day 20 by injections to caudal vein. Total RNA was extracted from the livers of pups and hybridized to the whole-genome RNA expression micro-arrays. The list of genes 2-fold differentially expressed was exported to PANTHER and Ingenuity Systems for analysis of enriched ontology groups and molecular pathways. RESULTS: Oxidoreductase and transferase protein families were enriched in exposed rats as were these biological process categories: carbohydrate metabolism; electron transport; and lipid, fatty acid, and steroid metabolism. Four signaling pathways (cascades of activation of drug-metabolizing enzymes) and 10 metabolic pathways were significantly enriched. Drug-metabolizing enzymes appear to be regulated by BDE-47 through an aryl hydrocarbon receptor-independent mechanism. Direct interaction with retinoid X receptor or its upstream cascade may be involved. The main metabolic effects consisted of activation of metabolic pathways: alpha- and omega-oxidation of fatty acids, glycolysis, and starch hydrolysis. CONCLUSIONS: Altered expression of genes involved in metabolic and signaling pathways and functions of the organism occurs after perinatal exposure of rat offspring to BDE-47 at doses relevant for the general population

    Fold change and p-value cutoffs significantly alter microarray interpretations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As context is important to gene expression, so is the preprocessing of microarray to transcriptomics. Microarray data suffers from several normalization and significance problems. Arbitrary fold change (FC) cut-offs of >2 and significance p-values of <0.02 lead data collection to look only at genes which vary wildly amongst other genes. Therefore, questions arise as to whether the biology or the statistical cutoff are more important within the interpretation. In this paper, we reanalyzed a zebrafish (<it>D. rerio</it>) microarray data set using GeneSpring and different differential gene expression cut-offs and found the data interpretation was drastically different. Furthermore, despite the advances in microarray technology, the array captures a large portion of genes known but yet still leaving large voids in the number of genes assayed, such as leptin a pleiotropic hormone directly related to hypoxia-induced angiogenesis.</p> <p>Results</p> <p>The data strongly suggests that the number of differentially expressed genes is more up-regulated than down-regulated, with many genes indicating conserved signalling to previously known functions. Recapitulated data from Marques et al. (2008) was similar but surprisingly different with some genes showing unexpected signalling which may be a product of tissue (heart) or that the intended response was transient.</p> <p>Conclusions</p> <p>Our analyses suggest that based on the chosen statistical or fold change cut-off; microarray analysis can provide essentially more than one answer, implying data interpretation as more of an art than a science, with follow up gene expression studies a must. Furthermore, gene chip annotation and development needs to maintain pace with not only new genomes being sequenced but also novel genes that are crucial to the overall gene chips interpretation.</p

    The Relationship between Dioxin-Like Polychlorobiphenyls and IGF-I Serum Levels in Healthy Adults: Evidence from a Cross-Sectional Study

    Get PDF
    OBJECTIVE: Insulin-like growth factor I (IGF-I) and dioxin-like polychlorobiphenyls (DL-PCBs) have been associated with the pathogenesis of several diseases like cancer, diabetes and growth disorders. Because it has been suggested that organohalogenated contaminants could influence IGF-I levels in adults, the potential relationship between DL-PCBs and IGF-I serum levels was studied in 456 healthy adults from a representative sample of the general population of the Canary Islands (Spain). DESIGN: Free circulating serum levels of IGF-I and IGFBP-3 were measured through an ELISA methodology, while the serum levels of the 12 DL-PCBs congeners (IUPAC numbers # 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, and 189) were measured by gas chromatography/mass spectrometry (GC-MS). RESULTS: DL-PCBs 156 and 167, Total DL-PCBs body burden (∑PCBs: sum over the 12 measured DL-PCBs), and Total toxic burden (in terms of toxic equivalence to dioxins: ∑TEQs) showed a trend of inverse association with IGF-I serum levels in the whole studied population. After adjusting for potential confounders, including gender, body mass index (BMI), age, and IGF-binding protein-3 (IGFBP-3), younger (18-45 years) women with lower BMI (<27 kg/m(2)) and detectable levels of DL-PCB-156 showed significantly lower IGF-I levels than those in the same age and BMI subgroup with non-detectable levels of DL-PCB-156 (p<0.001). Similarly, ∑PCBs and ∑TEQs showed a tendency to an inverse association with IGF-I levels in the same group of women (p=0.017 and p=0.019 respectively). CONCLUSIONS: These findings suggest that DL-PCBs could be involved in the regulation of the IGF-system in a way possibly influenced by gender, age and BMI. Although these results should be interpreted with caution, such circumstances could contribute to explain the development of diseases associated to the IGF system
    corecore