699 research outputs found

    Bianchi Type-II String Cosmological Models in Normal Gauge for Lyra's Manifold with Constant Deceleration Parameter

    Full text link
    The present study deals with a spatially homogeneous and anisotropic Bianchi-II cosmological models representing massive strings in normal gauge for Lyra's manifold by applying the variation law for generalized Hubble's parameter that yields a constant value of deceleration parameter. The variation law for Hubble's parameter generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential form. Using these two forms, Einstein's modified field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The energy-momentum tensor for such string as formulated by Letelier (1983) is used to construct massive string cosmological models for which we assume that the expansion (θ\theta) in the model is proportional to the component σ 11\sigma^{1}_{~1} of the shear tensor σij\sigma^{j}_{i}. This condition leads to A=(BC)mA = (BC)^{m}, where A, B and C are the metric coefficients and m is proportionality constant. Our models are in accelerating phase which is consistent to the recent observations. It has been found that the displacement vector β\beta behaves like cosmological term Λ\Lambda in the normal gauge treatment and the solutions are consistent with recent observations of SNe Ia. It has been found that massive strings dominate in the decelerating universe whereas strings dominate in the accelerating universe. Some physical and geometric behaviour of these models are also discussed.Comment: 24 pages, 10 figure

    Evaluation of recent advanced soft computing techniques for gully erosion susceptibility mapping: A comparative study

    Full text link
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Gully erosion is a problem; therefore, it must be predicted using highly accurate predictive models to avoid losses caused by gully development and to guarantee sustainable development. This research investigates the predictive performance of seven multiple-criteria decision-making (MCDM), statistical, and machine learning (ML)-based models and their ensembles for gully erosion susceptibility mapping (GESM). A case study of the Dasjard River watershed, Iran uses a database of 306 gully head cuts and 15 conditioning factors. The database was divided 70:30 to train and verify the models. Their performance was assessed with the area under prediction rate curve (AUPRC), the area under success rate curve (AUSRC), accuracy, and kappa. Results show that slope is key to gully formation. The maximum entropy (ME) ML model has the best performance (AUSRC = 0.947, AUPRC = 0.948, accuracy = 0.849 and kappa = 0.699). The second best is the random forest (RF) model (AUSRC = 0.965, AUPRC = 0.932, accuracy = 0.812 and kappa = 0.624). By contrast, the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) model was the least effective (AUSRC = 0.871, AUPRC = 0.867, accuracy = 0.758 and kappa = 0.516). RF increased the performance of statistical index (SI) and frequency ratio (FR) statistical models. Furthermore, the combination of a generalized linear model (GLM), and functional data analysis (FDA) improved their performances. The results demonstrate that a combination of geographic information systems (GIS) with remote sensing (RS)-based ML models can successfully map gully erosion susceptibility, particularly in low-income and developing regions. This method can aid the analyses and decisions of natural resources managers and local planners to reduce damages by focusing attention and resources on areas prone to the worst and most damaging gully erosion

    Foreign Direct Investment by Emerging Economy Multinationals: Coping with the Global Crisis

    Get PDF
    Even before the onset of the global crisis, the global market for foreign direct investment (FDI) had undergone significant changes. Foremost amongst these changes was the increasing importance of emerging market multinationals (MNEs). While outward foreign direct investment (OFDI) from these markets is, in itself, not new, the magnitude that this phenomenon achieved prior to the crisis and its resilience in the face of the global crisis suggest that this is not a temporary occurrence but rather a sign of a fundamental change that is taking place in the global OFDI market. However, emerging markets are not homogenous: in addition to the rise in OFDI from emerging markets, the formation of new regional groupings has led to the emergence of fresh investment patterns. This chapter examines changes taking place in global FDI flows and looks at the impact of the crisis in the context of profound structural changes; it also focuses on the response of emerging markets and the enormous risks and challenges that lie ahead. It is vital to note that this crisis is ongoing, and it is too early to predict the final contours it will leave in its wake on the FDI landscape

    Novel ensemble approaches of machine learning techniques in modeling the gully erosion susceptibility

    Full text link
    © 2020 by the authors. Gully erosion has become one of the major environmental issues, due to the severity of its impact in many parts of the world. Gully erosion directly and indirectly affects agriculture and infrastructural development. The Golestan Dam basin, where soil erosion and degradation are very severe problems, was selected as the study area. This research maps gully erosion susceptibility (GES) by integrating four models: maximum entropy (MaxEnt), artificial neural network (ANN), support vector machine (SVM), and general linear model (GLM). Of 1042 gully locations, 729 (70%) and 313 (30%) gully locations were used for modeling and validation purposes, respectively. Fourteen effective gully erosion conditioning factors (GECFs) were selected for spatial gully erosion modeling. Tolerance and variance inflation factors (VIFs) were used to examine the collinearity among the GECFs. The random forest (RF) model was used to assess factors' effectiveness and significance in gully erosion modeling. An ensemble of techniques can provide more accurate results than can single, standalone models. Therefore, we compared two-, three-, and four-model ensembles (ANN-SVM, GLM-ANN, GLM-MaxEnt, GLM-SVM, MaxEnt-ANN, MaxEnt-SVM, ANN-SVM-GLM, GLM-MaxEnt-ANN, GLM-MaxEnt-SVM, MaxEnt-ANN-SVM and GLM-ANN-SVM-MaxEnt) for GES modeling. The susceptibility zones of the GESMs were classified as very-low, low, medium, high, and very-high using Jenks' natural break classification method (NBM). Subsequently, the receiver operating characteristics (ROC) curve and the seed cell area index (SCAI) methods measured the reliability of the models. The success rate curve (SRC) and predication rate curve (PRC) and their area under the curve (AUC) values were obtained from the GES maps. The results show that the ANN model combined with two and three models are more accurate than the other combinations, but the ANN-SVM model had the highest accuracy. The rank of the others from best to worst accuracy is GLM, MaxEnt, SVM, GLM-ANN, GLM-MaxEnt, GLM-SVM, MaxEnt-ANN, MaxEnt-SVM, GLM-ANN-SVM-MaxEnt, GLM-MaxEnt-ANN, GLM-MaxEnt-SVM and MaxEnt-ANN-SVM. The resulting gully erosion susceptibility models (GESMs) are efficient and powerful and could be used to improve soil and water conservation and management

    Comparative study of nonlinear properties of EEG signals of a normal person and an epileptic patient

    Get PDF
    Background: Investigation of the functioning of the brain in living systems has been a major effort amongst scientists and medical practitioners. Amongst the various disorder of the brain, epilepsy has drawn the most attention because this disorder can affect the quality of life of a person. In this paper we have reinvestigated the EEGs for normal and epileptic patients using surrogate analysis, probability distribution function and Hurst exponent. Results: Using random shuffled surrogate analysis, we have obtained some of the nonlinear features that was obtained by Andrzejak \textit{et al.} [Phys Rev E 2001, 64:061907], for the epileptic patients during seizure. Probability distribution function shows that the activity of an epileptic brain is nongaussian in nature. Hurst exponent has been shown to be useful to characterize a normal and an epileptic brain and it shows that the epileptic brain is long term anticorrelated whereas, the normal brain is more or less stochastic. Among all the techniques, used here, Hurst exponent is found very useful for characterization different cases. Conclusions: In this article, differences in characteristics for normal subjects with eyes open and closed, epileptic subjects during seizure and seizure free intervals have been shown mainly using Hurst exponent. The H shows that the brain activity of a normal man is uncorrelated in nature whereas, epileptic brain activity shows long range anticorrelation.Comment: Keywords:EEG, epilepsy, Correlation dimension, Surrogate analysis, Hurst exponent. 9 page

    Gate-Controlled Ionization and Screening of Cobalt Adatoms on a Graphene Surface

    Full text link
    We describe scanning tunneling spectroscopy (STS) measurements performed on individual cobalt (Co) atoms deposited onto backgated graphene devices. We find that Co adatoms on graphene can be ionized by either the application of a global backgate voltage or by the application of a local electric field from a scanning tunneling microscope (STM) tip. Large screening clouds are observed to form around Co adatoms ionized in this way, and we observe that some intrinsic graphene defects display a similar behavior. Our results provide new insight into charged impurity scattering in graphene, as well as the possibility of using graphene devices as chemical sensors.Comment: 19 pages, 4 figure

    Electronic voting to encourage interactive lectures: a randomised trial

    Get PDF
    Background: Electronic Voting Systems have been used for education in a variety of disciplines. Outcomes from these studies have been mixed. Because results from these studies have been mixed, we examined whether an EVS system could enhance a lecture's effect on educational outcomes. Methods: A cohort of 127 Year 5 medical students at the University of Adelaide was stratified by gender, residency status and academic record then randomised into 2 groups of 64 and 63 students. Each group received consecutive 40-minute lectures on two clinical topics. One group received the EVS for both topics. The other group received traditional teaching only. Evaluation was undertaken with two, 15-question multiple-choice questionnaires (MCQ) assessing knowledge and problem solving and undertaken as a written paper immediately before and after the lectures and repeated online 8–12 weeks later. Standardised institutional student questionnaires were completed for each lecture and independent observers assessed student behaviour during the lectures. Lecturer's opinions were assessed by a questionnaire developed for this study. Results: Two-thirds of students randomised to EVS and 59% of students randomised to traditional lectures attended. One-half of the students in the EVS group and 41% in the traditional group completed all questionnaires. There was no difference in MCQ scores between EVS and traditional lectures (p = 0.785). The cervical cancer lectures showed higher student ranking in favour of EVS in all parameters. The breast cancer lectures showed higher ranking in favour of traditional lectures in 5 of 7 parameters (p < 0.001). The observed higher-order lecturer-students interactions were increased in the EVS lecture for one lecturer and reduced for the other. Both lecturers felt that the EVS lectures were difficult to prepare, that they were able to keep to time in the traditional lectures, that the educational value of both lecture styles was similar, and that they were neutral-to-slightly favourably disposed to continue with the EVS technology. The 2 lecturers disagreed regarding the ease of preparation of the traditional lecture, their ability to keep to time in the EVS lecture, and personal satisfaction with the EVS lecture. The lecturers felt that EVS encouraged student participation and helped identify where students were having difficulty. Conclusion: In this setting, EVS technology used in large group lectures did not offer significant advantages over the more traditional lecture format.Paul M Duggan, Edward Palmer and Peter Devit

    Characterization of Membrane Potential Dependency of Mitochondrial Ca2+ Uptake by an Improved Biophysical Model of Mitochondrial Ca2+ Uniporter

    Get PDF
    Mitochondrial Ca2+ uniporter is the primary influx pathway for Ca2+ into respiring mitochondria, and hence plays a key role in mitochondrial Ca2+ homeostasis. Though the mechanism of extra-matrix Ca2+ dependency of mitochondrial Ca2+ uptake has been well characterized both experimentally and mathematically, the mechanism of membrane potential (ΔΨ) dependency of mitochondrial Ca2+ uptake has not been completely characterized. In this paper, we perform a quantitative reevaluation of a previous biophysical model of mitochondrial Ca2+ uniporter that characterized the possible mechanism of ΔΨ dependency of mitochondrial Ca2+ uptake. Based on a model simulation analysis, we show that model predictions with a variant assumption (Case 2: external and internal Ca2+ binding constants for the uniporter are distinct), that provides the best possible description of the ΔΨ dependency, are highly sensitive to variation in matrix [Ca2+], indicating limitations in the variant assumption (Case 2) in providing physiologically plausible description of the observed ΔΨ dependency. This sensitivity is attributed to negative estimate of a biophysical parameter that characterizes binding of internal Ca2+ to the uniporter. Reparameterization of the model with additional nonnengativity constraints on the biophysical parameters showed that the two variant assumptions (Case 1 and Case 2) are indistinguishable, indicating that the external and internal Ca2+ binding constants for the uniporter may be equal (Case 1). The model predictions in this case are insensitive to variation in matrix [Ca2+] but do not match the ΔΨ dependent data in the domain ΔΨ≤120 mV. To effectively characterize this ΔΨ dependency, we reformulate the ΔΨ dependencies of the rate constants of Ca2+ translocation via the uniporter by exclusively redefining the biophysical parameters associated with the free-energy barrier of Ca2+ translocation based on a generalized, non-linear Goldman-Hodgkin-Katz formulation. This alternate uniporter model has all the characteristics of the previous uniporter model and is also able to characterize the possible mechanisms of both the extra-matrix Ca2+ and ΔΨ dependencies of mitochondrial Ca2+ uptake. In addition, the model is insensitive to variation in matrix [Ca2+], predicting relatively stable physiological operation. The model is critical in developing mechanistic, integrated models of mitochondrial bioenergetics and Ca2+ handling

    An adolescent with both Wegener's Granulomatosis and chronic blastomycosis

    Get PDF
    We report a case of Wegener's Granulomatosis (WG) associated with blastomycosis. This appears to be the first case report of WG co-existing with a tissue proven blastomycosis infection. The temporal correlation of the two conditions suggests that blastomycosis infection (and therefore possibly other fungal infections), may trigger the systemic granulomatous vasculitis in a predisposed individual; a provocative supposition warranting further study

    Type IIB supergravity solutions with AdS5 from Abelian and non-Abelian T dualities

    Get PDF
    We present a large class of new backgrounds that are solutions of type IIB supergravity with a warped AdS5{}_5 factor, non-trivial axion-dilaton, BB-field and three-form Ramond-Ramond flux but yet have no five-form flux. We obtain these solutions and many of their variations by judiciously applying non-Abelian and Abelian T-dualities, as well as coordinate shifts to AdS5×X5{}_5\times X_5 IIB supergravity solutions with X5=S5,T1,1,Yp,qX_5=S^5, T^{1,1}, Y^{p,q}. We address a number of issues pertaining to charge quantization in the context of non-Abelian T-duality. We comment on some properties of the expected dual super conformal field theories by studying their CFT central charge holographically. We also use the structure of the supergravity Page charges, central charges and some probe branes to infer aspects of the dual super conformal field theories.Comment: 71 pages, one table. v2: References added, some normalizations corrected, results unchange
    corecore